背光驅動電路為車載顯示器的背光源提供能量,其工作時產生的電磁干擾可能影響顯示效果。在整改中,優化背光驅動電路的拓撲結構。采用 PWM 調光方式時,合理選擇 PWM 頻率,避免與其他電路產生諧波干擾。同時,在驅動電路中增加濾波電感和電容,抑制電源線上的高頻紋波和開關噪聲。例如,在電感的選擇上,選用磁導率高、飽和電流大的電感,以更好地濾除干擾信號。此外,對背光驅動芯片進行合理布局,使其與其他電路保持適當距離,減少電磁耦合。通過優化背光驅動電路,降低其產生的電磁干擾,提高車載顯示器的顯示質量和穩定性。確保顯示器 EMC 穩定運行狀態。海南輻射發射汽車電子EMC整改測試項目
電源線與信號線分開布線:在汽車電子系統中,電源線和信號線分開布線是減少電磁干擾的重要原則。電源線傳輸的電流較大,易產生較強的磁場,若與信號線靠近布線,會通過電磁感應在信號線上耦合出干擾信號。例如,汽車發動機艙內的電源線為多個大功率設備供電,電流波動頻繁,而附近的傳感器信號線負責傳輸微弱的傳感器信號。將兩者分開布線,能有效避免電源線磁場對信號線的干擾。通常,在布線設計時,會在 PCB 板上劃分專門的電源線區域和信號線區域,或者在汽車線束中采用不同的線束套管將電源線和信號線隔開,確保它們在傳輸過程中互不干擾,提高系統信號傳輸的準確性和穩定性。湖北車載CAN總線EMC汽車電子EMC整改實驗室確保顯示器外殼接地穩固良好。
升級關鍵芯片:汽車電子系統中的芯片是部件,其抗干擾能力直接影響整體 EMC 性能。部分老舊芯片在設計時對電磁兼容性考慮不足,易受外界干擾。整改過程中,可評估并選用具備更高抗擾度的新型芯片。例如,一些芯片采用了先進的工藝制程,內部增加了完善的靜電保護電路和電源濾波模塊。更換這些芯片后,設備對靜電放電、電源尖峰等干擾的耐受能力增強。同時,新型芯片的工作穩定性更高,能減少因自身工作異常產生的電磁輻射,從源頭改善汽車電子系統的電磁兼容性,為系統可靠運行提供有力保障。
控制布線長度和走向:布線長度和走向對汽車電子 EMC 性能有影響。過長的布線會增加信號傳輸延遲和損耗,同時也會增大電磁輻射面積和干擾耦合的可能性。例如,對于高速數字信號,如汽車多媒體系統中的 LVDS 信號,過長的布線會導致信號失真,出現誤碼等問題。在整改時,要盡量縮短布線長度。同時,合理規劃布線走向,避免布線形成環形回路,因為環形回路易感應外界磁場,產生較大的感應電流,成為干擾源。通過精確控制布線長度和走向,能有效降低汽車電子設備的電磁輻射,提高系統的抗干擾能力,保障信號的穩定傳輸。調整顯示器驅動芯片工作參數。
車載顯示器中的高頻信號線,如 LVDS 視頻信號線、時鐘信號線等,傳輸速率高、信號變化快,容易產生較強的電磁輻射,同時也對干擾更為敏感。因此,需要對高頻信號線進行特殊處理。對于 LVDS 信號線,要采用特性阻抗匹配的傳輸線,提高信號傳輸質量。同時,對高頻信號線進行包地處理,即在信號線周圍布置一圈接地銅箔,形成屏蔽結構,減少信號對外的輻射以及外界干擾對信號線的耦合。此外,高頻信號線應盡量避免與其他信號線交叉,若不可避免,要采用垂直交叉方式,降低信號間的串擾。通過這些特殊處理,能有效保障高頻信號線的信號質量,提升車載顯示器的顯示性能和電磁兼容性。優化直流電機 EMC 濾波電路設計。海南輻射發射汽車電子EMC整改測試項目
合理設置設備接地方式,避免環路。海南輻射發射汽車電子EMC整改測試項目
布線長度和走向對車載顯示器的 EMC 性能有影響。過長的布線會增加信號傳輸延遲,導致圖像顯示出現拖影等問題,同時也會增大電磁輻射面積和干擾耦合的可能性。例如,對于高速的 LVDS 視頻信號線,其傳輸速率高,對布線長度和走向要求嚴格。過長的布線會使信號失真,影響圖像清晰度。在整改時,要盡量縮短布線長度,遵循短路徑原則,減少信號傳輸損耗。同時,合理規劃布線走向,避免布線形成環形回路,因為環形回路易感應外界磁場,產生較大的感應電流,成為干擾源。通過精確控制布線長度和走向,能有效降低車載顯示器的電磁輻射,提高顯示信號的穩定性和圖像質量。海南輻射發射汽車電子EMC整改測試項目