近幾年來,增材制造在全球范圍內迅速走熱,各國對于增材制造技術又開始重新重視起來,美國總統奧巴馬將其視作制造業回歸升級的重要方向,中國也在金屬增材制造領域一直處于排名在前的水平。隨著技術不斷的進步,增材制造已經在航空航天、模具以及汽車等領域獲得大規模應用,而走在應用前列的當屬美國NASA。據美國國家航空航天局(NASA)官網近日報道,NASA工程人員正通過利用增材制造技術制造頭一個全尺寸銅合金火箭發動機零件以節約成本,NASA空間技術任務部負責人表示,這是航空航天領域3D打印技術應用的新里程碑。增材制造(AM)技術又稱為快速原型、快速成形、快速制造、3D打印技術等,是指基于離散-堆積原理,由零件三維數據驅動直接制造零件的科學技術體系。基于不同的分類原則和理解方式,增材制造技術的內涵仍在不斷深化,外延也不斷擴展。增材制造技術不需要傳統的刀具和夾具以及復雜的加工工序,在一臺設備上可快速精密地制造出任意復雜形狀的零件,從而實現了零件“自由制造”,解決了許多復雜結構零件的成形,并很大程度減少了加工工序,縮短了加工周期,而且產品結構越復雜。 高精度的增材制造可打印出頂端的折射微納光學元件。湖南Nanoscribe增材制造設備
隨著各行各業的發展及科技的進步,人們可以用3D打印創建在人體內傳導藥物的載體,可以用3D打印來建造房子。人們還可以用3D打印創作出精美的珠寶首飾和設計,甚至可以用這項技術做出巨大的藝術雕塑。Nanoscribe 公司專注于微觀3D打印技術,通過該用戶可以得到尺寸微小的高質量產品。全新推出的Quantum X平臺新型超高速無掩模光刻技術主要是基于Nanoscribe雙光子灰度光刻技術(2GL®)。該技術將灰度光刻的***性能與雙光子聚合的精確性和靈活性完美結合,使其同時具備高速打印,完全設計自由度和超高精度的特點。從而滿足了**復雜增材制造對于優異形狀精度和光滑表面的極高要求。這種具有創新性的增材制造工藝縮短了企業的設計迭代,打印樣品結構既可以用作技術驗證原型,也可以用作工業生產上的加工模具。江蘇進口增材制造三維微納米加工系統增材制造(Additive Manufacturing,AM)俗稱3D打印,融合了計算機輔助設計、材料加工與成型技術。
增材制造技術能夠簡化光學器件的制造流程,縮短交貨期并降低材料消耗。更重要的是,增材制造技術能夠實現功能集成的優化設計方案,尤其在衛星光學系統制造領域,增材制造技術能夠滿足用戶對輕型光學系統不斷增長的需求,并實現下一代高附加值光學器件的制造。通過增材制造技術開發的下一代光學儀器中,將越來越多采用緊湊的功能集成設計,如集成隔熱,冷卻通道,局限的機械和熱接口,以及將光學功能作為設備自身結構的一部分。緊湊集成化設計減少了組件裝配過程中出現問題的風險,同時開辟了制造冷卻光學系統,有源光學系統或自由曲面的新方式。陶瓷增材制造技術的凈成形能力,還能夠提高準確性,改善集成/結合過程的質量。在成就高附加值零件方面,3D打印的應用還包括很多,除了打印極度復雜的結構、打印混合材料,3D打印因為技術種類繁多也帶來了高附加值零件的創新空間,例如3D打印感應器、3D打印多層電路、3D打印電池等等。Nanoscribe作為全球納米制造和精密制造用高精度3D打印制造商,在科研和工業領域有眾多用戶,包括哈佛大學納米系統中心,加州理工學院,倫敦帝國理工學院,蘇黎世聯邦理工大學等。
一般通俗地稱增材制造為3D打印,而事實上3D打印只是增材制造工藝的一種,它不是準確的技術名稱。增材制造指通過離散-堆積使材料逐點逐層累積疊加形成三維實體的技術。根據它的特點又稱增材制造,快速成形,任意成型等。增材制造通過降低模具成本,減少材料,減少裝配,減少研發周期等優勢來降低企業制造成本,提高生產效益。具體優勢如下:與傳統的大規模生產方式相比,小批量定制產品在經濟上具有吸引力;直接從3DCAD模型生產意味著不需要工具和模具,沒有轉換成本;以數字文件的形式進行設計方便共享,方便組件和產品的修改和定制;該工藝的可加性使材料得以節約,同時還能重復利用未在制造過程中使用的廢料(如粉末、樹脂)(金屬粉末的可回收性估計在95-98%之間);新穎、復雜的結構,如自由形式的封閉結構和通道,是可以實現的,使得部件的孔隙率非常低;訂貨減少了庫存風險,沒有未售出的成品,同時也改善了收入流,因為貨物是在生產前支付的;分銷允許本地消費者/客戶和生產者之間的直接交互。 Nanoscribe在中國的子公司納糯三維科技(上海)有限公司為您淺析增材制造技術在制造業中的特點與應用。
德國公司Nanoscribe是高精度增材制造技術的排名在前的開發商,也是 BICO集團(前身為Cellin)的一部分,推出了一款新型高精度3D 打印機,用于制造微納米級的精細結構。據該公司稱,新的Quantum X 形狀加入了該公司屢獲殊榮的Quantum X產品線,其晶圓處理能力使“3D 微型零件的批量處理和小批量生產變得容易”。它有望顯著提高生命科學、材料工程、微流體、微光學、微機械和微機電系統 (MEMS) 應用的精度、輸出和可用性。基于雙光子聚合(2PP),一種提供比較高精度和完整設計自由度的增材制造方法和 Nanoscribe 專有的雙光子灰度光刻 (2GL) 技術,Nanoscribe認為直接激光寫入系統是微加工的比較好選擇幾乎任何 2.5D 或 3D 形狀的結構,在面積達 25 cm2 的區域上都具有亞微米級精度。Nanoscribe在中國的子公司納糯三維科技(上海)有限公司邀您一起探討增材制造技術的運用。湖南Nanoscribe增材制造設備
更多增材制造的信息,請咨詢Nanoscribe在中國的子公司納糯三維科技(上海)有限公司。湖南Nanoscribe增材制造設備
雖然半導體行業一直在使用3D打印技術,我們可能會有一個疑問,為什么我們沒有聽說,一個因素是競爭。如果全球只有四個龐大的大型公司,它們構成了光刻或制造機器的主要部分,那么這些公司并沒有告訴外界關于他們應用3D打印技術的內幕,因為他們想確保的競爭優勢。至少,對外界揭示其優化設備性能的技術,這種主觀動機并不強。增材制造改善半導體工藝是多方面的,從輕量化,到隨形冷卻,再到結構一體化實現,根據3D科學谷的市場觀察,增材制造使得半導體設備中的零件性能邁向了一個新的進化時代!在許多情況下,3D打印-增材制造可能使這些系統能夠更接近理論上預期的工作環境,而不是在機器操作上做出妥協。3D打印帶來的直接好處包括更高的精度、更高的生產能力、更快的周期時間,甚至使得每臺機器每周生產更多的晶圓。某些情況下,還將看到整個晶片的成像質量更高。這將意味著更少的浪費和更高質量的產品。湖南Nanoscribe增材制造設備