鈣離子在很多生理活動中都發(fā)揮著重要作用,除了在肌肉細胞收縮中扮演著重要角色,鈣離子也是神經元活動的重要“風向標”之一:當神經元膜電位發(fā)生去極化,產生的動作電位傳導到神經元軸突末梢時,細胞膜上的電壓門控鈣離子通道打開,大量鈣離子內流,包含神經遞質的囊泡由突觸前膜...
包含鈣離子指示劑的細胞可以通過熒光顯微鏡(fluorescencemicroscope)觀測,然后通過CCD攝像機捕捉、記錄圖像。現在鈣成像技術主要在以下幾類神經科學研究方面有廣泛應用:1.記錄培養(yǎng)的神經元的活動。2.記錄腦片上神經元的活動。3.huoti記錄...
神經元鈣成像技術離不開鈣離子指示劑的應用,不同類型的指示劑各有其獨特的功能。那么這些指示劑是如何負載細胞的呢?目前有三種在神經元上填充鈣離子指示劑的方法,且都可以用于體內和體外研究。第一種方法是利用玻璃吸管將膜滲透性鹽或葡聚糖形式的指示劑注入單個神經元中。此方...
膜片鉗技術原理:膜片鉗技術是用玻璃微電極吸管把只含1-3個離子通道、面積為幾個平方微米的細胞膜通過負壓吸引封接起來(見右圖),由于電極前列與細胞膜的高阻封接,在電極前列籠罩下的那片膜事實上與膜的其他部分從電學上隔離,因此,此片膜內開放所產生的電流流進玻璃吸管,...
隨著技術的發(fā)展,雙光子顯微鏡的性能得到不斷地優(yōu)化,結合它的特點,大致可以分成深和活兩個方面的提升。要想讓激發(fā)激光進入更深的層面,大致可從兩個方面入手,裝置優(yōu)化與標本改造。關于裝置優(yōu)化,我們可以把激光束變得更細,使能量更加集中,就能讓激光穿透更深。關于標本,其中...
首先我們來簡單介紹一下激光掃描共聚焦和雙光子這兩種當紅的顯微成像技術。激光掃描共聚焦顯微技術,是熒光顯微成像的一種,用于激發(fā)樣品的熒光信號并對其放大成像。在激光掃描共聚焦顯微鏡中,樣品焦平面上每一時刻只有一個點被激發(fā)光照射,縱然焦平面外也有激發(fā)光照射,但通過探...
不同的全自動膜片鉗技術所采用的原理如PopulationPatchClamp技術∶同SealChip技術一樣,完全摒齊了玻璃電極,而是采用PatchPlate平面電極芯片。該芯片含有多個小室,每個小室中含有很多1-2μm的封接孔。在記錄時,每個小室中封接成功的...
高阻封接問題的解決不僅改善了電流記錄性能,還隨之出現了研究通道電流的多種膜片鉗方式。根據不同的研究目的,可制成不同的膜片構型。(1)細胞吸附膜片(cell-attachedpatch)將兩次拉制后經加熱拋光的微管電極置于清潔的細胞膜表面上,形成高阻封接,在細胞...
對電極持續(xù)施加一個1mV、10~50ms的階躍脈沖刺激,電極入水后電阻約4~6MΩ,此時在計算機屏幕顯示框中可看到測試脈沖產生的電流波形。開始時增益不宜設得太高,一般可在1~5mV/pA,以免放大器飽和。由于細胞外液與電極內液之間離子成分的差異造成了液結電位,...
這一設計模式似乎幾十年都沒有改變過,作為一個有著近20年膜片鉗經驗的科研工作者,記得自己進入實驗室次看到的放大器就差不多是這樣,也不覺得還會有什么變化。直到筆者在19年訪問歐洲的一個同樣做電生理的實驗室的時候,發(fā)現了這樣一款獨特的放大器,讓筆者眼前一亮,這款放...
利用鈣成像技術記錄大腦活動,隨著功能光學成像技術的發(fā)展,神經學家們已經可以研究腦區(qū)和神經元內部的工作情況。功能鈣成像技術就是其中之一,其主要原理是將外源性熒光信號和生理現象耦合起來——通過熒光染料信號的改變反映細胞內游離鈣離子濃度,以此細胞的功能狀態(tài)。目前它被...
想要對鈣離子的動態(tài)變化進行有效的檢測,鈣離子指示劑的選擇顯得尤為重要。鈣離子熒光指示劑在未結合鈣離子前幾乎無熒光,與鈣離子結合后,熒光強度明顯增強。利用這一原理,可以通過指示劑的信號強弱來觀察細胞內鈣離子濃度水平的變化。根據激發(fā)光波長范圍,鈣離子指示劑可以分為...
霍華德休斯頓醫(yī)學研究所(HHMI)ScottSternson課題組研究了影響這種源源不斷的食欲的神經機制。他們通過使用Inscopix小顯微鏡觀察小鼠腦干區(qū)域的神經元,發(fā)現貪念美食的小鼠可能是因為特殊的大腦區(qū)域對美食和奶茶比其他小鼠更加敏感。本能會驅使我們在感...
傳統的寬場熒光顯微鏡由于光散射的影響,只能夠對大腦淺層的神經元或在離體組織上進行成像,共聚焦顯微鏡由于光損傷較大,一般也只用于離體鈣成像。隨著熒光顯微鏡技術的迅速發(fā)展,在體鈣成像技術得到了蓬勃發(fā)展。雙光子熒光顯微鏡能夠在進行活動動物成像的時候實現高分辨率和高信...
案例:在國際小鼠表型分型協會中鑒定影響睡眠的基因。Jackson實驗室IMPC中心的表型KOs小鼠實驗,通過實驗研究發(fā)現:基因的無偏選擇對睡眠有非常明顯的影響,無創(chuàng)睡眠檢測系統具有高準確率--已經測試50/300條KO線篩選,適用性廣--更多的粒度分析將有助于...
細胞內鈣離子作為重要的信號分子其作用具有時間性和空間性。當個細胞興奮時,產生了一個電沖動,此時,細胞外的鈣離子流入該細胞內,促使該細胞分泌神經遞質,神經遞質與相鄰的下一級神經細胞膜上的蛋白分子結合,促使這一級神經細胞產生新的電沖動。以此類推,神經信號便一級一級...
鈣成像技術通常使用熒光染料或報告基因來標記細胞中的鈣離子。當細胞受到外界刺激時,鈣離子會進入細胞內,導致熒光染料或報告基因發(fā)出光信號。通過觀察光信號的強度和分布,可以推斷出鈣離子的濃度和分布情況。鈣成像技術具有以下優(yōu)點:高靈敏度:可以檢測到細胞內微小的鈣離子濃...
PiezoSleep收集數據后,即可輕松將其導入我們的SleepStats數據處理軟件。借助SleepStats軟件,用戶可以深入了解收集到的信息并確定相關的內容。SleepStats軟件設計初衷,是為用戶提供直觀的體驗。SleepStats軟件用于分析和繪制...
解決鈣成像裝置對核磁成像的干擾:考慮到金屬對核磁成像的影響,研究人員在核磁共振成像的模塊上裝上了鈣成像模塊,該成像模塊所有的金屬元件全部被更換為非導電塑料。考慮到磁場對光纖記錄系統的干擾,減少鈣信號的噪音,將相干光纖激光器與核磁共振放置相鄰不同的房間。解決鈣成...
目前可用的指示劑較多,根據熒光光譜、與鈣離子親和力及其化學特性的不同大致分為化學性鈣離子指示劑和基因編碼鈣離子指示劑。前者指可特異性與鈣離子結合的小分子,常用的有fura-2、indo-1等;而后者主要指來源于綠色熒光蛋白GFP及其變異體的蛋白質,可與鈣調蛋白...
解決鈣成像裝置對核磁成像的干擾:考慮到金屬對核磁成像的影響,研究人員在核磁共振成像的模塊上裝上了鈣成像模塊,該成像模塊所有的金屬元件全部被更換為非導電塑料。考慮到磁場對光纖記錄系統的干擾,減少鈣信號的噪音,將相干光纖激光器與核磁共振放置相鄰不同的房間。解決鈣成...
解決鈣離子信號和BOLD信號轉換:功能核磁共振成像主要依賴于神經元興奮后局部耗氧與血流振幅的不一致,通過測定血氧水平依賴性(BOLD)信號間接反映神經元活動。而鈣成像技術則是直接通過鈣離子濃度變化反映神經元活動。將這兩種技術聯用,需要考慮BOLD信號和鈣離子濃...
與傳統的單光子寬視野熒光顯微鏡相比,多光子顯微鏡(MPM)具有光學切片和深層成像等功能,這兩個優(yōu)勢極大地促進了研究者們對于完整大腦深處神經的了解與認識。2019年,JeromeLecoq等人從大腦深處的神經元成像、大量神經元成像、高速神經元成像這三個方面論述了...
多種鈣離子指示劑和鈣成像手段的存在使研究人員能夠根據具體的實驗需要進行選擇。同樣,選擇合適的檢測設備也是至關重要的。對于使用CCD/sCMOS相機的成像系統來說,有兩個要求是很基本的:采集速度:根據不同的應用所需的相機幀速也不同,對于神經細胞來說,一般要求相機...
轉基因Ca2+指示劑:轉基因技術和光遺傳技術的飛速發(fā)展,催生了基因編碼的Ca2+指示劑(GECIs)。它們不依賴于熒光染料,可以靶向特定的組織,如神經細胞、心肌細胞、T細胞等,并且可以避免熒光指示劑帶來的的許多問題,是監(jiān)測轉基因動物體內鈣離子的一個極好的工具。...
霍華德休斯頓醫(yī)學研究所(HHMI)ScottSternson課題組研究了影響這種源源不斷的食欲的神經機制。他們通過使用Inscopix小顯微鏡觀察小鼠腦干區(qū)域的神經元,發(fā)現貪念美食的小鼠可能是因為特殊的大腦區(qū)域對美食和奶茶比其他小鼠更加敏感。本能會驅使我們在感...
鈣成像技術通常使用熒光染料或報告基因來標記細胞中的鈣離子。當細胞受到外界刺激時,鈣離子會進入細胞內,導致熒光染料或報告基因發(fā)出光信號。通過觀察光信號的強度和分布,可以推斷出鈣離子的濃度和分布情況。鈣成像技術具有以下優(yōu)點:高靈敏度:可以檢測到細胞內微小的鈣離子濃...
睡眠百分比(白天和黑夜選項)滑動間隔的覺醒百分比超過24小時的睡眠百分比繪制睡眠/覺醒決策直方圖睡眠時長直方圖(默認或用戶定義)睡眠時長直方圖(白天到晚上)輕松將文件導出到Excel進行離線分析。,用戶可以選擇在實驗過程中的任何時候放大和覆蓋睡眠覺醒圖上的原始...
無創(chuàng)睡眠監(jiān)視系統在實驗動物睡眠研究領域的應用具有普遍的實際意義。首先,對于醫(yī)學和生物學領域的研究者來說,實時、準確的實驗動物睡眠數據是研究人類睡眠障礙、神經性疾病以及心血管疾病等的重要參考依據。無創(chuàng)睡眠監(jiān)視系統能夠提供連續(xù)、可靠的睡眠監(jiān)測數據,為科研人員深入探...
多光子激發(fā)在紫外成像的優(yōu)勢在可見光脈沖中能得到紫外衍射的顯微觀察像。即使不使用紫外域光源、光學元件用可見光源、光學元件就能得到紫外光激勵的高空間分辨率圖像。多光子在生物成像中的優(yōu)勢在生物顯微鏡觀察方面,較早考慮的是不損壞生物本身的活性狀態(tài),維持水分、離子濃度、...