美國(guó)Caliper Life Sciences公司Andrea Chow博士認(rèn)為,微流控技術(shù)的成功取決于技術(shù)上的跨界聯(lián)合、技術(shù)和應(yīng)用,這三個(gè)因素是相關(guān)的。他說(shuō):“為形成聯(lián)合,我們嘗試了所有可能達(dá)到一定復(fù)雜性水平的應(yīng)用。從長(zhǎng)遠(yuǎn)且嚴(yán)密的角度來(lái)對(duì)其進(jìn)行改進(jìn),我們發(fā)現(xiàn)了很多無(wú)需經(jīng)過(guò)復(fù)雜的集成卻有較高使用價(jià)值的應(yīng)用,如機(jī)械閥和微電動(dòng)機(jī)械系統(tǒng)(MEMS)。改進(jìn)的微流控技術(shù),一般用于蛋白或基因電泳,常常可取代聚丙烯酰胺凝膠電泳。進(jìn)一步開(kāi)發(fā)的微流控芯片可用于酶和細(xì)胞的檢測(cè),在開(kāi)發(fā)新prescription面很有用。表面親疏水涂層調(diào)控接觸角,優(yōu)化微流道內(nèi)流體傳輸與反應(yīng)效率。山東微流控芯片私人定做
微流控芯片(microfluidic chip)是當(dāng)前微全分析系統(tǒng)(Miniaturized Total Analysis Systems)發(fā)展的熱點(diǎn)領(lǐng)域。微流控芯片分析以芯片為操作平臺(tái), 同時(shí)以分析化學(xué)為基礎(chǔ),以MEMS微機(jī)電加工技術(shù)為依托,以微管道網(wǎng)絡(luò)為結(jié)構(gòu)特征,以生命科學(xué)為目前主要應(yīng)用對(duì)象,是當(dāng)前微全分析系統(tǒng)領(lǐng)域發(fā)展的重點(diǎn)。它的目標(biāo)是把整個(gè)化驗(yàn)室的功能,包括采樣、稀釋、加試劑、反應(yīng)、分離、檢測(cè)等集成在微芯片上,且可以多次使用。包括:白金電阻芯片, 壓力傳感芯片, 電化學(xué)傳感芯片, 聲學(xué)微流控芯片,微/納米反應(yīng)器芯片, 微流體燃料電池芯片, 微/納米流體過(guò)濾芯片等。中國(guó)澳門微流控芯片方法肺組織微流控芯片的應(yīng)用。
大腦微流控芯片:與神經(jīng)元和細(xì)胞間相互作用直接相關(guān)的因素在腦組織功能的情況下起著重要作用。大腦及其組織的研究在很大程度上是復(fù)雜的,這使得諸如培養(yǎng)皿或培養(yǎng)瓶之類的2D模型無(wú)效,因?yàn)檫@些系統(tǒng)無(wú)法模擬大腦的實(shí)際生理環(huán)境。為了克服這一局限性,研究人員目前正在研究開(kāi)發(fā)大腦微流控芯片平臺(tái),可以在先進(jìn)的小型化工程平臺(tái)下研究大腦的生理因素,該平臺(tái)可以通過(guò)多步光刻技術(shù)制備。它通過(guò)制造不同尺寸的微通道進(jìn)一步實(shí)現(xiàn)了對(duì)腦組織的研究。
微米級(jí)尺度微流控芯片的精密加工與應(yīng)用:在0.5-5μm微米級(jí)尺度微流控芯片加工領(lǐng)域,公司依托MEMS光刻、深硅刻蝕及納米壓印等技術(shù),實(shí)現(xiàn)亞微米級(jí)精度的微流道、微孔陣列及三維結(jié)構(gòu)制造。電鏡下可見(jiàn)的精細(xì)流道網(wǎng)絡(luò),其寬度誤差可控制在±50nm以內(nèi),適用于單分子檢測(cè)、液滴生成等超高精度場(chǎng)景。例如,在單分子免疫檢測(cè)芯片中,微米級(jí)微孔陣列可實(shí)現(xiàn)單個(gè)生物分子的捕獲與熒光信號(hào)放大,檢測(cè)靈敏度較傳統(tǒng)方法提升10倍以上。該尺度芯片的加工難點(diǎn)在于材料刻蝕均勻性與表面粗糙度控制,公司通過(guò)干濕結(jié)合刻蝕工藝與表面化學(xué)修飾技術(shù),解決了高深寬比結(jié)構(gòu)(如10:1以上)的加工瓶頸,成功應(yīng)用于外泌體分選、循環(huán)腫瘤細(xì)胞捕獲等前沿生物醫(yī)學(xué)領(lǐng)域,為精細(xì)醫(yī)療提供器件支撐。完善 PDMS 芯片產(chǎn)線覆蓋來(lái)料加工、生產(chǎn)、質(zhì)檢,支持高標(biāo)準(zhǔn)批量交付。
心臟組織微流控芯片(HoC)是一種先進(jìn)的OoC,它模仿了服用劑型或特定藥物分子后人類心臟的整體生理學(xué)。使用該芯片已經(jīng)觀察到一些不良反應(yīng)。Mathur等人在2015年證明了動(dòng)物試驗(yàn)不足以估計(jì)測(cè)試藥物分子相對(duì)于人體的確切藥代動(dòng)力學(xué)和藥效學(xué)。為此,微流控芯片技術(shù)在心血管疾病研究,心血管相關(guān)藥物開(kāi)發(fā),心臟毒性分析以及心臟組織再生研究中起著至關(guān)重要的作用。Sidorov等人于2016年創(chuàng)建了一個(gè)I-wired HoC。他們檢測(cè)到心肌收縮,這是通過(guò)倒置光學(xué)顯微鏡測(cè)量的。此外,工程化的3D心臟組織構(gòu)建體(ECTC)現(xiàn)在能夠在正常和患病條件下復(fù)制心臟組織的復(fù)雜生理學(xué)。圖1C顯示了心臟組織微流控芯片的示意圖,其中上層由心臟上皮細(xì)胞組成,下層由心臟內(nèi)皮細(xì)胞組成。兩層都被多孔膜隔開(kāi)。它還包括有助于抽血的真空室。基于MEMS發(fā)展而來(lái)的微流控芯片技術(shù)。陜西微流控芯片之PI柔性器件
硅片微流道加工集成微電極,構(gòu)建腦機(jī)接口柔性電極系統(tǒng)減少手術(shù)創(chuàng)傷。山東微流控芯片私人定做
通過(guò)微流控芯片檢測(cè),有助于改進(jìn)診斷性能、發(fā)現(xiàn)尚未被識(shí)別的致病性自身抗體。隨著微流控免疫芯片的推廣,自身抗體檢測(cè)成為微流控免疫芯片的重要研究方向之一。此類芯片的設(shè)計(jì)不同于其他免疫芯片,用于自身抗體檢測(cè)的微流控芯片須將自身抗原固定在芯片表面。Matsudaira等人通過(guò)光活性劑將自身抗原共價(jià)固定在聚酯平板上,利用光照射誘導(dǎo)自由基反應(yīng)實(shí)現(xiàn)固定,不需要自身抗原的特定官能團(tuán)。Ortiz等人將3種自身抗體通過(guò)羧基端硫醇化而固定在聚酯表面,用于檢測(cè)乳糜瀉特異性自身抗體,該微流控芯片的敏感性接近商品化酶聯(lián)免疫吸附試驗(yàn)試劑盒。山東微流控芯片私人定做