飛機的照明系統在飛行安全和乘客舒適度方面起著重要作用,3D 打印技術為飛機照明系統創新帶來了機遇。在飛機客艙照明燈具制造中,3D 打印可以制造出具有獨特造型和光學性能的燈罩和燈具外殼。通過使用透光性好、強度高的材料進行 3D 打印,制造出的燈罩能夠實現均勻、柔和的照明效果,為乘客提供舒適的乘坐環境。同時,3D 打印可以根據飛機內飾設計風格,定制化生產照明燈具,使其與飛機整體內飾相融合,提升飛機的整體美觀度。此外,3D 打印還可以制造出具有應急照明功能的燈具部件,提高飛機照明系統的可靠性和安全性。建筑 3D 打印構件,提升施工效率與創意。湖南TPU 白三維打印
飛機的空氣動力學性能對其飛行效率和燃油經濟性有著重要影響,3D 打印技術在飛機空氣動力學部件優化方面發揮著積極作用。在飛機的機翼前緣和后緣設計中,通過 3D 打印制造出具有仿生學結構的擾流板和襟翼。這些部件的表面結構模仿自然界中鳥類翅膀或魚類身體的形狀,能夠有效改善飛機周圍的氣流分布,減少空氣阻力,提高升力系數。同時,3D 打印可以根據不同型號飛機的飛行特點和需求,定制化生產這些空氣動力學部件,進一步優化飛機的空氣動力學性能,降低燃油消耗,提升飛機的運營效益。ULTEM 9085 CG三維打印網站藝術創作新途徑,3D 打印創造獨特視覺效果。
3D 打印在電子電路制造方面具有獨特的優勢。傳統的電路板制造工藝復雜,對于一些具有特殊結構或功能的電路板,制作難度較大。3D 打印可以直接在三維空間中構建電子電路,實現電路的立體化設計。通過使用導電墨水等材料,3D 打印機能夠打印出具有復雜布線和功能的電路板,減少了傳統電路板制造過程中的多層堆疊和焊接工序,降低了電路故障的風險。此外,3D 打印還便于制造具有特殊功能的電子設備,如可穿戴電子設備,能夠根據人體形狀進行定制化生產,推動電子電路制造向更加高效、靈活、個性化的方向發展。
三維打印的起源與發展:三維打印技術并非一蹴而就,它起源于 19 世紀美國的照相雕塑和地貌成型技術,學界稱之為 “快速成型技術” 。1986 年,美國科學家查爾斯?胡爾利用光敏樹脂液態材料,發明出世界上***臺 3D 打印機,這成為了 3D 打印發展歷程中的重要里程碑。隨后,以此技術為基礎,世界上***家 3D 打印設備公司 3D Systems 成立,并于 1992 年推出了商業化產品。上世紀 90 年代,3D 技術迎來了快速發展期,像美國得克薩斯大學卡爾提出選擇性激光燒結(SLS)技術,麻省理工學院申請 “三維印刷技術” **等。進入本世紀,全球眾多公司紛紛涉足 3D 打印制造領域,逐漸形成了如 Stratasys 公司和 3D Systems 等行業巨頭,推動著 3D 打印技術不斷革新與進步。3D 打印市場擴大,推動產業蓬勃發展。
航空航天領域的推進系統研發一直是技術創新的重點,3D 打印在其中發揮著關鍵作用。在液體火箭發動機的推進劑輸送管道制造中,傳統工藝難以制造出具有復雜彎曲形狀和高精度內表面的管道。3D 打印技術通過選區激光燒結工藝,使用**度的金屬材料,能夠精確制造出符合設計要求的推進劑輸送管道。這些管道的內部表面光滑,可有效減少推進劑在輸送過程中的壓力損失,提高發動機的推進效率。同時,通過優化管道的結構,使其在滿足強度要求的前提下實現輕量化,為火箭發動機的性能提升和整體減重做出重要貢獻,推動航天推進技術不斷向前發展。生物 3D 打印細胞,探索醫療再生領域。遼寧模具鋼三維打印
3D 打印,依三維建模逐層造,突破傳統制造邊界。湖南TPU 白三維打印
三維打印的成型技術分類:按照 3D 打印的成型機理,通常可將其分為沉積原材料制造與黏合原材料制造兩大類 ,涵蓋十多種具體的三維快速制造技術。其中,較為成熟且具備實際應用潛力的技術有 5 種。SLA - 立體光固化成型,利用液態光敏樹脂,成形速度快,精度相對較高,外形表面好;FDM - 容積成型,主要使用絲狀熱熔性塑料,是目前***可桌面化的技術;LOM - 分層實體制造,采用薄膜材料;3DP - 三維粉末粘接,可使用金屬粉末或塑料粉末等;SLS - 選擇性激光燒結,能夠制作相對**度的金屬制品,在**制造領域發揮重要作用。湖南TPU 白三維打印