組成:1、機械密封一般由四大部分組成:1)由靜止環和旋轉環組成的一對密封端面,該密封端面有時也稱為摩擦副,是機械密封的主要;2)以彈性元件(或磁性元件)為主的補償緩沖機構;3)輔助密封機構;4)使動環和軸一起旋轉的傳動機構。2、機械密封的結構多種多樣,較常見的結構如上圖所示。機械密封安裝在旋轉軸上,密封腔內有1、緊定螺釘 2、彈簧座 3、彈簧 4、動環輔助密封圈 5、動環 它們隨軸一起旋轉。機械密封的其他零件、包括6、靜環7、靜環輔助密封圈和8、防轉銷安裝在鍋蓋內,端蓋和密封腔體用螺栓連接。高效、經濟且環保是未來工業發展的趨勢,而干氣密閉正好契合這一理念。山西泵用干氣密封供應
第二級干氣密封作為輔助安全密封,雖然不承受介質的壓力,但需要在適當的壓差下端面才可形成穩定的氣膜而長期理想的運行,系統通過在一級泄漏氣出口端設置節流閥,調整閥門孔徑使其產生約適當的背壓來滿足要求。節流閥同時還起到一級密封失效時限制泄漏量的作用。另引一路氮氣為隔離氣,經過濾器、減壓閥后引入后置的梳齒阻隔密封中間。控制其壓力稍高于軸承箱油壓(通常為大氣壓),形成一個性能可靠的阻塞密封系統。可保證軸承箱中的潤滑油不進入干氣密封,也可避免殘余的工藝氣進入軸承區域污染潤滑油。隔離氣的一部分進入軸承箱,另一部分與一級泄漏氣中剩余的極少量未被燃燒的工藝氣混合,稱為二級泄漏氣。可作為對環境無害的氣體引入安全場所排放。河北機械干氣密封用途新型數字化工具使得干氣密閉設計更加精確,從而提升了整體工藝水平與競爭力。
干氣體密封在轉子上的配置與運行要求:由于結構上的要求,氣體密封承擔著兩方面的任務:一是要防止轉動期間主環與配對環接觸,避免摩擦生熱;同時當軸不轉動時,密封應為零泄漏量。因此,首先主環與配對環要精加工、精安裝,保持該接觸面在光帶上所測平面度要求。圖6表示典型的安裝在壓縮機出口端的干氣體密封。這個密封是以固定的主環面安裝在軸端上可以移動的夾持環里的簡單裝置。轉動配對環利用臺階和O形環輔助密封與安裝在軸上的夾持箍相連。這種固定壓縮機密封主要工作面的方法是相當常見的。
后置隔離密封失效,外側密封被污染:機組設計后置隔離氣密封系統目的為防止軸承箱潤滑油進入,污染密封面。在使用過程中,可能會因為設計或操作方面的原因導致潤滑油污染密封端面。例如:軸承腔排空不暢(呼吸帽過濾網堵塞)、氣體設計流速低造成氣量過小、迷宮齒數或間隙不合適、孔板設計過小、系統控制問題、氮氣波動或供氣中斷、開停車操作順序錯誤、誤操作等等。為了避免開車誤操作,一般設計后置隔離氣壓力低開機前禁止潤滑油泵啟動聯鎖,防止軸承箱潤滑油污染干氣密封。許多企業通過實施干氣密閉技術實現了零泄漏目標,為環境保護貢獻了一份力量。
干氣體密封的輔助系統和浮環油膜密封比較,干氣體密封不需要復雜的輔助系統。只需要提供簡單的控制系統以監測密封的情況和自動停車的情況。圖7所示為一典型的干氣體密封輔助系統。潔凈的密封氣(可以是工藝氣,也可以是外設的氮氣)以高于壓縮機內被封工藝氣體的壓力由入口1注入到密封裝置,用以阻止壓縮機工藝氣體滲漏。在兩側干氣密封面間泄漏的工藝介質氣和隔離氣的混合氣經過壓力開關PSM (PAM)、限流孔板3和流量計4后,排放到主放空口,去火炬系統。隔離氣(氮氣)由入口2注入,用以保護密封部件免受污染和阻止工藝氣體泄漏,而靠近壓縮機外部的密封泄漏氣體主要為極少量的緩沖氣體,經次放空口5放空。壓縮機油泵運行前,必須將隔離氣體(氮氣)引入到干氣密封裝置,以防止密封部件和油接觸。壓縮機使用前,一般先注入潔凈的氮氣啟動和保護密封面,在壓縮機投入正常運行前,置換來自壓縮機出口的工藝氣,工藝氣必須經過過濾器過濾。干氣密封在核電站中的應用也越來越普遍,為核能安全提供了保障措施。防水干氣密封廠家直銷
干氣密封系統的設計需要綜合考慮流體動力學、熱力學等多種因素,以實現較佳效果。山西泵用干氣密封供應
當由氣體壓力和彈簧力產生的閉合壓力與氣體膜的開啟壓力相等時,便建立了穩定的平衡間隙。在動力平衡條件下,作用在密封上的力如圖3所示。閉合力Fc,是氣體壓力和彈簧力的總和。開啟力Fo是由端面間的壓力分布對端面面積積分而形成的。在平衡條件下Fc=Fo,運行間隙大約為3微米,如果由于某種干擾使密封間隙減小,則端面間的壓力就會升高,這時,開啟力Fo大于閉合力Fc,端面間隙自動加大,直至平衡為止。類似的,如果擾動使密封間隙增大,端面間的壓力就會降低,閉合力Fc大于開啟力Fo,端面間隙自動減小,密封會很快達到新的平衡狀態。山西泵用干氣密封供應