技術的開發必須考慮到用戶,并且其設計應極大限度地提高可用性和可重復性。提供與自動化兼容的高通量功能可以激勵研究人員,使他們受益于效率的提高和人工成本的降低。在某些情況下,器官芯片還可以減少動物試驗,細胞和試劑的成本,因為許多微流控設備需要更小的體積。為了延長MPS模型的壽命,巨大的努力已經導向為長期實驗提供更大的窗口,可以進行復合劑量和疾病進展的觀察,腸道屏障功能的體外模型和肝病模型已經可以維持數周。英國CNBio的Physiomimix器官芯片正是基于實現此遠大目標而應運而生。更多關于CNBIO器官芯片相關產品問題,歡迎咨詢上海曼博生物!器官芯片的制備還需要考慮其對細胞穩定性和活性的影響。關于類器官芯片使用注意事項
CN-Bio使得器官芯片在藥物研發的一系列流程中得以應用,從早期的靶點開發一直到支持臨床前開發。比如可以用于疾病建模,早期研發,鑒定新的藥靶,理解疾病進展的機制。同樣的疾病模型還可用于支持臨床開發以及非正式的臨床設計。在CN-Bio,我們研發了先進的HBV和代謝性肝臟疾病模型。在DMPK中,CN-Bio的器官芯片被用于鑒定化合物的代謝,并且在未來多器g系統,比如器g間交流,比如肝腸模型,將被用于更高等級的轉化。我們很快今年年初除了一款肝-腸模型芯片TL6,后面我們將討論相關細節。關于類器官芯片常見問題器官芯片的優化和改進還需要考慮其對環境和資源的影響。
我們評估了一種英國CN-Bio的微生理系統(MPS),也稱為器官芯片(OOC),其體外肝臟模型是否可用于了解肝臟毒性的詳細機制方面。MPS先前已被證明可在液流狀態下維持高度功能性的3D肝臟微組織長達4周,這可能使其非常適合評估DILI。我們使用了兩種抗糖尿病的噻唑烷二酮類藥物,曲格列酮(獲得市場批準,但后來因DILI而撤銷)和吡格列酮(批準的藥物,但已知具備DILI風險)以評估MPS是否可檢測急性和慢性毒性。這兩種化合物的DILI通常很難使用標準的體外肝臟分析實驗和體內臨床前模型進行檢測。對于每種化合物,進行一系列功能性肝臟特異性終點(包括臨床生物標記物)的濃度反應分析,以生成EC50曲線。對功能性肝臟特異性終點進行分析,以從MPS中創建一個獨特的機理的“肝毒性特征”,以證明其評估新型藥物的人類DILI風險的能力。
為了進一步改善體內藥代動力學和藥效學的預測,需要更復雜的器官芯片模型,包括與ADME相關的多種組織,包括腸道、肝臟和腎臟。多器guanMPS提供了研究器guan間相互作用和串擾的獨特能力。對于ADME,結合肝臟和腸道模型,口服藥物可以在一個單一系統中進行研究,該系統可以解釋通過腸道屏障的化合物通透性和肝臟代謝。在這里,我們介紹一種多器guan腸肝器官芯片,使用MPS-TL6耗材板。該板與CNBio的PhysioMimix多器官芯片實驗室臺式儀器兼容,由六個孔組成,每個孔有兩個隔室,一個Transwell還有肝臟。液體流量可以在每個腔室和從肝臟到transwell的互連通道中單獨控制。腸道屏障是由腸上皮細胞和杯狀細胞混合培養在一個可通透的Transwell薄膜上。器官芯片的制備還需考慮其對細胞增殖和凋亡等生理過程的影響.
器官芯片技術被提出來模擬心血管系統的動態條件,特別是心臟和一般血管系統。這些系統特別注意模仿結構組織、剪切應力、跨壁壓力、機械拉伸和電刺激。心臟和血管芯片平臺已經成功生成,用于研究各種生理現象、疾病模型和探索藥物的作用。器官芯片在生理、機械和結構上與模擬器guan相似的支架上容納活ti人體細胞。藥物或病毒通過模擬體內血液流動的管子通過細胞。測試中使用的活細胞在芯片上的壽命比傳統實驗室方法長得多,并且與傳統使用的模型系統相比,需要更低的感ran劑量。哪個品牌的器官芯片比較好?關于類器官芯片常見問題
器官芯片的應用還需要遵循偷規范和實驗原則,如知情同意\保護個人隱私等。關于類器官芯片使用注意事項
MPS(微生理系統),也即器官芯片系統,包含一系列平臺,這些平臺通過使用微工程技術(通常與3D微環境結合使用)來模仿器g功能的各個方面。此類系統已報告為3D球體,Organoid,器官芯片,多器官芯片,靜態微圖案技術和非物理芯片模型。在這些平臺中,活細胞和微流體技術與某種形式的藥物輸送,刺激和/或傳感工具結合使用。器官芯片(OOC)模型可以作為單個系統或模擬器g相互交流的連接單元存在。MPS建立通過傳統二維實驗使用的概念上,并包括改善生理相關性的設計特征,例如1)生物聚合物或組織衍生基質中的3D微環境;2)模擬體內發現的機械提示,例如拉伸和灌注,以提供剪切應力;3)多種細胞類型;4)引入濃度梯度的能力。更多器官芯片相關產品信息,歡迎咨詢上海曼博生物!關于類器官芯片使用注意事項