器官芯片應用的機會在于疾病建模和表型篩選,以幫助識別和排序新的和已知的(包括孤兒藥和可用于重新用途的失敗化合物)化合物候選物。正在尋求改進的模型來解決動物模型不能很好滿足的條件(例如,乙型肝炎),并能夠進行宿主遺傳研究,藥物治療反應的建模以及鑒定可用于監測藥物治療的生物標記物。英國CNBio正在其基于MIT的器官芯片技術產品Physiomimix系統上開發先進的體外模型,以支持對高度流行的疾病的研究,這些疾病已對公共健康產生了公認的影響,例如非酒精性脂肪性肝炎(NASH)。人類NASH的微組織模型可以證明疾病的主要標志,提供了在細胞水平上闡明病理生理機制的機會.更多關于器官芯片相關產品信息,歡迎咨詢上海曼博生物!器官芯片的制備還需考慮其對細胞外基質的影響和調整。人體器官芯片用途
微流控器官芯片的微流體通道中可以包含各種各樣的復雜組件,例如微泵系統,混合室,合成基質,傳感器(可以集成到在線數據記錄器中),閥門和可單獨控制的氣動管線。必須為多器官芯片MPS建立細胞交流的途徑,這可能涉及可溶性因子或細胞跨基質遷移。可調的流速,MPS內和MPS外的混合和分布,以及可調節的氧合水平為研究人員優化細胞活力或提出實驗性問題提供了高度的靈活性。微流控器官芯片這些緊湊且適應性強的系統背后是各種各樣的設計和制造方法。計算機輔助設計工具用于生成微流體和微電子系統的數字3D設計,可以將其導入3D打印軟件(也稱為“疊加制造技術”)。組織工程支架的生產中存在多種3D打印方法。基于擠壓的3D打印是一種成熟的方法,它使用逐層工藝直接沉積熱塑性或熱固性材料。相反,采用立體光刻技術來印刷整個微流體系統,并利用光和光反應性材料引起空間控制的光聚合。動脈類器官芯片生產商器官芯片的制備過程主要包括細胞培養、微加工、打印等步驟。
我們展示了多器guan腸肝MPS-TL6,由MPS器官芯片平臺英國CN-Bio的PhysioMimix多器guan設備控制,可以概括抗yan藥雙氯芬酸的藥代動力學。PHHs在肝臟MPS的3D工程支架中培養,然后加入腸MPSTranswells孔,后者是腸上皮細胞和杯狀細胞的混合物,形成屏障。在給藥實驗期間,肝功能標志物CYP3A4、白蛋白和尿素維持在MPS-TL6中。腸屏障的完整性也通過TEER測量得到了證實。雙氯芬酸被添加到腸器官芯片Transwells的頂端,在那里它通過屏障滲透,主要由肝臟代謝。我們證明了腸道屏障對雙氯芬酸的生物利用度的影響,以及隨后通過PHHs消除。通過在MPS-TL6中培養單個和多個器guan的組織模型,我們可以評估肝臟、腸道和聯合培養時對代謝產物產生的貢獻。值得注意的是,在共培養的腸-肝MPS中產生的代謝物水平較高,大于單個器guan器官芯片的總和,表明器guan-器guan串擾促進組織功能。
英國CNBio的PhysioMimix器官芯片可在一系列培養條件下進行先進的長時間體外肝臟培養以及進行不同階段NAFLD/NASH疾病模型的構建。此生理相關的實驗模型旨在幫助加速針對該慢性肝病的新療法研究的進程。使用器官芯片,我們已經開發出了一種完整的人類灌注體外NAFLD模型,利用3D培養的原代人肝細胞(PHH)來模仿肝臟的微體系結構。細胞使用高濃度的游離脂肪酸培養長達四周,以誘導細胞內甘油三酸酯(脂肪)累積并模仿肝脂肪變性。研究了該模型中細胞的CYP酶活性變化,以及對已知的肝毒性劑在IC:50濃度附近給藥時的影響。更多關于器官芯片相關產品信息,歡迎咨詢上海曼博生物!器官芯片的成本和使用門檻也需要進行相應的評估和比較.
鑒于I期試驗中只有十分之一的臨床前候選藥物可能會獲得市場認可,因此迫切需要更好的臨床成功預測指標。由于藥代動力學和藥效學(PK/PD)的物種差異,體外模型過于簡化以及對基本病生理的了解不足,將體外研究的結果轉化為體內情況仍然是一個挑戰。終止通常歸因于動物研究中發現的安全問題,可以通過更準確地預測吸收,分布,代謝和排泄(ADME)譜來很大程度地減少。盡管2D單層細胞培養實驗和動物模型已深深地嵌入到藥物基礎設施中,但仍然存在明顯的差距,效率低下和不準確之處,因此需要新的替代和補充研究模型。在生物工程和細胞生物學的交叉中,存在著一種新的發現和開發藥物的方法,人們正在尋求這種新方法來克服眾所周知的低臨床成功率。微生理系統(MPS),也即器官芯片系統是一類新興的體外模型,有望通過在研發的關鍵階段提供可靠的生理相關數據來加快藥物開發。英國CN Bio的Physiomimix器官芯片正是基于實現此遠大目標而應運而生。器官芯片的制備還需考慮其對細胞增殖和凋亡等生理過程的影響.肝臟器官芯片資訊
器官芯片的優化和改進還需結合大數據、人工智能等技術進行整合和升級.人體器官芯片用途
英國CNBio的PhysioMimix器官芯片可在一系列培養條件下進行先進的長時間體外肝臟培養以及進行不同階段NAFLD/NASH疾病模型的構建。此生理相關的實驗模型旨在幫助加速針對該慢性肝病的新療法研究的進程。使用器官芯片,我們已經開發出了一種完整的人類灌注體外NAFLD模型,利用3D培養的原代人肝細胞(PHH)來模仿肝臟的微體系結構。細胞使用高濃度的游離脂肪酸培養長達四周,以誘導細胞內甘油三酸酯(脂肪)累積并模仿肝脂肪變性。研究了該模型中細胞的CYP酶活性變化,以及對已知的肝毒性劑在IC:50濃度附近給藥時的影響. 人體器官芯片用途