影響底部填充膠流動性的因素:在倒裝芯片的封裝中,焊球點是連接芯片和PCB板的通道,在芯片上分布著密密麻麻的焊點,焊點的存在,實際是增加了底部填充膠流動的阻力,所以我們在推薦底部填充膠給用戶時務必要了解清楚芯片焊球的焊接密度,密度越大,縫隙越小,一般必須選擇流動性更好的底部填充膠,所以這里說明的是芯片焊球密度大小對底部填充膠的流動性存在阻力大小之分;表面張力:底部填充膠在平整的芯片與基板界面自然流動,必須借助外力進行推動,流向周圍,那么這個力便是表面張力,表面張力越大,填充膠所受到的推力也就越大,流動性也就越快。不知大家有沒聽過膠水的阻流特性,其實該特性也是需要更具材料表面張力進行設計,此因素比較物理化。底部填充膠可以增強BGA封裝模式的芯片和PCBA之間的抗跌落性能。衡水耐高溫單組份環氧膠廠家
一般底部填充膠的可返修性與填料以及玻璃化轉變溫度Tg 有關。添加了無機填料的底部填充膠由于固化后膠體強度大,附著在線路板上很難清理,所以如果有返修要求的膠水不能添加填料。Tg是指底部填充膠從玻璃態到高彈態的轉變溫度,超過了Tg 的底部填充膠變軟后易于清理。和固化要求一樣,為了保護元器件,芯片返修加熱溫度不宜過高。如果Tg 高,膠體在100~150℃的操作溫度下難以清理。Tg 溫度低易于清理,但是Tg 太小又不利于增強芯片的機械性和耐熱性。通常可返修的底部填充膠的Tg 建議控制在60~85℃之間較好。鞍山電路板焊點保護膠廠家底部填充膠工藝流程分為四步驟,烘烤、預熱、點膠、固化、檢驗。
底部填充膠空洞檢測方法:填充膠底部膠空洞檢測的方法。主要有三種:1.利用玻璃芯片或基板:直觀檢測,提供即時反饋,缺點在于玻璃器件上底部填充膠(underfill)的流動和空洞的形成行與實際的器件相比可能有些細微的偏差。2.超聲成像和制作芯片剖面:超聲聲學成像是一種強有力的工具,它的空洞尺寸的檢測限制取決于封裝的形式和所使用的儀器;3.將芯片剝離的破壞性試驗:采用截面鋸斷,或將芯片或封裝從下underfill底部填充膠上剝離的方法,有助于更好地了解空洞的三維形狀和位置,缺點在于它不適用于還未固化的器件。底部填充膠翻修性好,可以減少不良率。
哪種低溫固化底部填充膠更好用?漢思化學的底部填充膠,防潮防水、防油防塵性能佳,耐濕熱和大氣老化,具有良好的絕緣、抗壓等電氣及物理特性。能在較低溫度,短時間內快速版固化,在多種不同類型的材料之間形成較好的粘接力,產品任務性能優良,具有較高的貯權存穩定性。適用于記憶卡、CCD/CMOS等產品,亦可用于PCBA組裝中各類主動和被動元器件的粘結接、補強等等。底部填充膠就一種單組份、改性環氧樹脂膠,用于BGA、CSP和Flip chip底部填充制程,它能形成一致和無缺陷的底部填充層,能有效降低由于硅芯片與基板之間的總體溫度膨脹特性不匹配或外力造成的沖擊。受熱固化后,可提高芯片連接后的機械結構強度。在底部填充膠用于量產之前,需要對填充環節的效果進行切割研磨試驗,也就是所謂的破壞性試驗。
底部填充膠流動型空洞的檢測方法:一般采用多種施膠圖案,或者采用石英芯片或透明基板進行試驗是了解空洞如何產生,并如何來消除空洞的直接方法。通過在多個施膠通道中采用不同顏色的下填充材料是使流動過程直觀化的理想方法。流動型空洞的消除方法:通常,往往采用多個施膠通道以降低每個通道的填充量,但如果未能仔細設定和控制好各個施膠通道間的時間同步,則會增大引入空洞的幾率。采用噴射技術來替代針滴施膠,控制好填充量的大小就可以減少施膠通道的數量,同時有助于有助于對下底部填充膠(underfill)流動進行控制和定位。底部填充膠根據毛細作用原理,不同間隙高度和流動路徑,流動時間也不同。山東倒裝芯片膠廠家
底部填充材料具有低翹曲、低應力的優點。衡水耐高溫單組份環氧膠廠家
芯片底部填充膠在便攜式設備中的線路板通常較薄,硬度低,容易變形,細間距焊點強度小,因此芯片耐機械沖擊和熱沖擊差。為了能夠滿足可靠性要求,倒裝芯片一股采用底部填充技術,對芯片和線路板之間的空隙進行底部填充補強。底部填充材料是在毛細作用下,使得流動著的底部填充材料完全地填充在芯片和基板之問的空隙內。由于采用底部填充膠的芯片在跌落試驗和冷熱沖擊試驗中有優異的表現,所以在焊錫球直徑小、細間距焊點的BGA/CSP芯片組裝中都要進行底部補強。在線路板組裝生產中,對芯片底部填充膠有易操作,快速流動,快速固化的要求,同時還要滿足填充性,兼容性和返修性等要求。通常可返修的底部填充膠的Tg 建議控制在60~85℃之間較好。衡水耐高溫單組份環氧膠廠家