在發射率變化10%時,溫度測量的誤差百分比。比如在1000°C,使用8-14μm(參見**上面的一條黃色線)的紅外測溫儀或熱像儀測溫時,那么誤差%=8%,所以:在1000°C時,誤差測量的***誤差=1000°Cx8%=80°C。同樣的,我們也可以像第一張圖一樣算出1μm時的在1000°C的誤差為12°C,在1500°C時的誤差為近20°C。也就是說,上面2個圖是完全一樣的;上面2個圖都說明,溫度越高,紅外測溫設備誤差越來越大;高溫時,尤其是超過1000°C時,盡量使用短波測量高溫--就是說,紅外測溫儀或紅外熱像儀使用的波長越短,其測量誤差要比波長越長的要低得多。這就是為什么使用紅外測溫時,使用的波長越短越好。科研人員利用紅外熱像儀對植物生長過程中的熱量釋放進行監測,取得了重要研究成果。DSR80NV紅外測溫儀供應商
在線式紅外測溫儀由光學系統、光電探測器、信號放大器及信號處理、顯示輸出等部分組成。在線紅外測溫儀所測的溫度是物體的輻射溫度而不是物體的實際溫度,由于黑體是不存在的,在同一溫度下實際物體熱輻射總量總比標準黑體輻射總量小,所以在線紅外測溫儀測出的溫度肯定小于物體的真實溫度。測溫時應盡可能將紅外測溫儀發射率設置(針對可調節發射率的在線式紅外測溫儀)成與被測材料相同的發射率值的發射率,盡可能使測量示值與被測物的真實溫度一致。在線紅外測溫儀的比較大優點是可實現非接觸測量,并且可以容易地測得運動物體和難以接觸的物體的溫度。透過火焰測溫紅外測溫儀用途紅外熱像儀的遠距離探測能力使得它在安防監控系統中具有獨特優勢,能夠在完全黑暗的環境中實現無死角監控.
紅外測溫儀由光學系統、光電探測器、信號放大器及信號處理、顯示輸出等部分組成。光學系統匯聚其視場內的目標紅外輻射能量,視場的大小由測溫儀的光學零件及其位置確定。紅外能量聚焦在光電探測器上并轉變為相應的電信號。該信號經過放大器和信號處理電路,并按照儀器內療的算法和目標發射率校正后轉變為被測目標的溫度值。在自然界中,一切溫度高于零度的物體都在不停地向周圍空間發出紅外輻射能量。物體的紅外輻射能量的大小及其按波長的分布——與它的表面溫度有著十分密切的關系。因此,通過對物體自身輻射的紅外能量的測量,便能準確地測定它的表面溫度,這就是紅外輻射測溫所依據的客觀基礎。黑體是一種理想化的輻射體,它吸收所有波長的輻射能量,沒有能量的反射和透過,其表面的發射率為1。
紅外測溫儀的優點:一是與被測對象不接觸,在測體溫時不會造成不必要的接觸;二是快速,通常測量時間小于1秒,一般不會超過2秒。因此十分適合于在發燒類疾病預防檢測中應用。通常在人體溫度37℃附近,紅外熱成像體溫快速篩檢儀的準確度能達到±0.3℃,紅外體溫計能達到±0.2℃。從測量準確度來說,紅外耳溫計測量準確度比較高,紅外額溫計次之。但是,如果測量方法不正確,測量結果也會不準確。對于新購買的人體紅外測溫儀,或使用頻繁以及對測量結果有懷疑時,應當對人體紅外測溫儀進行校準,以確定其修正值,則能盡量消除測溫儀的系統誤差。紅外測溫儀波長在5um以上不能透過石英玻璃進行測溫,因為玻璃有很特殊的反射和透過特性。
紅外測溫儀工作原理光學系統匯集其視場內的目標紅外輻射能量,視場的大小由測溫儀的光學零件以及位置決定。紅外能量聚焦在光電探測儀上并轉變為相應的電信號。該信號經過放大器和信號處理電路按照儀器內部的算法和目標發射率校正后轉變為被測目標的溫度值。除此之外,還應考慮目標和測溫儀所在的環境條件,如溫度、氣氛、污染和干擾等因素對性能指標的影響及修正方法。一切溫度高于***零度的物體都在不停地向周圍空間發出紅外輻射能量。物體的紅外輻射能量的大小及其按波長的分布——與它的表面溫度有著十分密切的關系。因此,通過對物體自身輻射的紅外能量的測量,便能準確地測定它的表面溫度,這就是紅外輻射測溫所依據的客觀基礎。要發現被測點,紅外測溫儀瞄準目標,然后在目標上作上下掃描運動,直至確被測點。抗電磁干擾紅外測溫儀怎么用
紅外熱像儀的引入,讓科研人員在材料科學研究中對溫度場的分析更加很準確和高效。DSR80NV紅外測溫儀供應商
另外紅外測溫儀出現和廣泛應用使得半導體高溫計可以在更***的溫度范圍內進行測量,并且不受電磁干擾的影響,這種技術的應用也**提高了高溫計的測量精度和可靠性。工業自動化和智能化的推進,半導體高溫計也越來越傾向于實現自動化和智能化,例如使用自動控制系統或智能軟件進行溫度測量和控制。與國外相比,國內半導體高溫計行業的技術水平相對滯后,這使得國內企業在國際市場上的競爭力較弱。行業的周期性波動較為明顯,周期性的行業萎縮期會對半導體高溫計行業產生不利影響。半導體高溫計企業需要高層次的光學、物理學人才,還需要企業持續的對產品進行研發,行業進入門檻較高,這對于新進入行業的企業來說是一個不利因素。DSR80NV紅外測溫儀供應商