**是全世界一個主要死亡原因,2020年有近1000萬人死于**[1]。而其中膠質母細胞瘤是一種極具破壞性的腦**,其*細胞增殖非常快且具有**性。為了研究、***和破壞腦腫瘤細胞,研究人員正在研究使用質子放射***,該***手段已被證明在不同**類型中比x射線放射***更有效和微創的技術。然而,質子放射***的成本很高,這使得在動物和人類身上進行的試驗也變得非常昂貴,幾乎無法進行。質子放射***的高成本也導致缺乏從細胞水平了解質子對膠質母細胞瘤影響的臨床研究。體外模型為評估*細胞對藥物和輻射的反應提供了一個平臺。然而,由于無法模擬體內自然發生的3D環境,傳統2D單層細胞培養存在很大局限性。為了尋找更真實的模擬環境,代爾夫特理工大學(DelftUniversityofTechnology)的科學家們利用Nanoscribe的3D微納加工系統制作了3D工程細胞微環境,并且***次在質子束放射實驗中研究了所培養的膠質母細胞瘤細胞3D打印支架,以探究其對輻射的反應。令人印象深刻的是,該實驗結果顯示,與2D單層細胞相比,3D工程細胞培養中的DNA損傷得到了***降低。Nanoscribe是頭一家將基于該原理的產品系列Nanoscribe Photonic Professional打印系統推向市場的科技公司。四川進口Nanoscribe生物醫學
Nanoscribe設備專注于納米,微米和中等尺寸的增材制造。早期的PhotonicProfessionalGT3D打印機設計用于使用雙光子聚合生產納米和微結構塑料組件和模具。在該過程中,激光固化部分液態光敏材料,逐層固化。使用雙光子聚合,分辨率可低至200納米或高達幾毫米。另一方面,GT2現在可以在短時間內在高達100×100mm2的打印區域上生產具有亞微米細節的物體,通常為160納米至毫米范圍。此外,使用GT2,用戶可以選擇針對其應用定制的多組物鏡,基板,材料和自動化流程。該系統還具有用戶友好的3D打印工作流程,用于制作單個元素。這些元件可以創造出比較大的形狀精度和表面光滑度,滿足智能手機行業中微透鏡或細胞生物學中的花絲支架結構的要求。Nanoscribe在中國的子公司納糯三維科技(上海)有限公司帶您了解增材制造的工藝過程前處理。重慶微納米Nanoscribe憑借著獨有的3D微納加工技術,Nanoscribe參與了各種研究項目,以開發基于集成光子學新技術。
所打印的亞微米級別分辨率器件具有特別高的形狀精度,屬于目前市場上易于操作的“負膠”。IP樹脂作為高效的打印材料,是Nanoscribe微納加工解決方案的基本組成部分之一。我們提供針對優化不同光刻膠和應用領域的高級配套軟件,從而簡化3D打印工作流程并加快科研和工業領域的設計迭代周期,包括仿生表面,微光學元件,機械超材料和3D細胞支架等。利用Nanoscribe的雙光子聚合微納3D打印技術,斯圖加特大學和阿德萊德大學的研究人員聯手澳大利亞醫學研究中心的科學家們新研發的微型內窺鏡
3D設計的多功能性對于制作復雜且響應迅速的高精度微型機械,傳感器和執行器是至關重要的。基于雙光子聚合原理的激光直寫技術,可適用于您的任何新穎創意的快速原型制作;也適合科學家和工程師們在無需額外成本增加的前提下,實現不同參數的創新3D結構的制作。Nanoscribe公司的PhotonicProfessionalGT2系統把雙光子聚合技術融入強大了3D打印工作流程,實現了各種不同的打印方案。雙光子聚合技術用于3D微納結構的增材制造,可以通過激光直寫而避免使用昂貴的掩模版和復雜的光刻步驟來創建3D和2.5D微結構制作。PhotonicProfessionalGT2系統可以實現精度上限的3D打印,突破了微納米制造的限制。該打印系統的易用性和靈活性的特點配以比較廣的打印材料選擇使其成為理想的實驗研究儀器和多用戶設施。我們的3D微納加工技術可以滿足您對于制作亞微米分辨率和毫米級尺寸的復雜微機械元件的要求。Nanoscribe的技術能夠實現微米級別的精確打印,為科學研究和工業應用提供了全新的可能性。
Nanoscribe對準雙光可光刻技術搭配nanoPrintX,一種基于場景圖概念的軟件工具,可用于定義對準3D打印的打印項目。樹狀數據結構提供了所有與打印相關的對象和操作的分層組織,用于定義何時、何地、以及如何進行打印。在nanoPrintX中可以定義單個對準標記以及基板特征,例如芯片邊緣和光纖表面。使用Quantum X align系統的共焦單元或光纖照明單元,可以識別這些特定的基板標記,并將其與在nanoPrintX中定義的數字模型進行匹配。對準雙光子光刻技術和nanoPrintX軟件是Quantum X align系統的標配。研究人員利用Nanoscribe公司的3D光刻技術將光學引線鍵合到芯片上,有效地將各種光子集成平臺連接起來。德國雙光子Nanoscribe
科學家們使用德國Nanoscribe 的3D打印設備制造了復雜的微孔膜結構。四川進口Nanoscribe生物醫學
光子集成電路(PhotonicIntegratedCircuit,PIC)與電子集成電路類似,但不同的是電子集成電路集成的是晶體管、電容器、電阻器等電子器件,而光子集成電路集成的是各種不同的光學器件或光電器件,比如激光器、電光調制器、光電探測器、光衰減器、光復用/解復用器以及光放大器等。集成光子學可較廣地應用于各種領域,例如數據通訊,激光雷達系統的自動駕駛技術和YL領域中的移動感應設備等。而光子集成電路這項關鍵技術,尤其是微型光子組件應用,可以很大程度縮小復雜光學系統的尺寸并降低成本。光子集成電路的關鍵技術還在于連接接口,例如光纖到芯片的連接,可以有效提高集成度和功能性。類似于這種接口的制造非常具有挑戰性,需要權衡對準、效率和寬帶方面的種種要求。四川進口Nanoscribe生物醫學