光學成像技術與分子生物學技術的結合為研究上述科學問題提供了條件與可能。因此,在現代分子生物學技術基礎上,急需發展新的成像技術。在動物體內,如何實現基因表達及蛋白質之間相五作用的實時在體成像監測是當前迫切需要解決的重大科學技術問題。這是也生物學、信息科學(光學)和基礎臨床醫學等學科共同感興趣的重大問題。對這-一一科學問題的研究不僅有助于闡明生命活動的基本規律、認識疾病的發展規律,而且對創新藥物研究、藥物療效評價以及發展疾病早期診斷技術等產生重大影響。從雙光子到三光子甚至四光子,這種非線性成像技術通常也被統稱為多光子顯微鏡。美國激光掃描多光子顯微鏡代理商
雙光子熒光顯微成像主要有以下優點∶a.光損傷小∶雙光子熒光顯微鏡使用可見光或近紅外光作為激發光,對細胞和組織的光損傷很小,適合于長時間的研究;b.穿透能力強∶相對于紫外光,可見光或近紅外光具有很強的穿透性,可以對生物樣品進行深層次的研究;c.高分辨率∶由于雙光子吸收截面很小P,只有在焦平面很小的區域內可以激發出熒光,雙光子吸收局限于焦點處的體積約為λ范圍內;d.漂白區域很小,焦點以外不發生漂白現象。e.熒光收集率高。與共聚焦成像相比,雙光子成像不需要光學濾波器,提高了熒光收集率。收集效率提高直接導致圖像對比度提高。f.對探測光路的要求低。由于激發光與發射熒光的波長差值加大以及自發的三維濾波效果,多光子顯微鏡對光路收集系統的要求比單光子共焦顯微鏡低得多,光學系統相對簡單。g.適合多標記復合測量。許多染料熒光探針的多光子激發光譜要比單光子激發譜寬闊,這樣,可以利用單一波長的激發光同時激發多種染料,從而得到同一生命現象中的不同信息,便于相互對照、補充。美國飛秒激光多光子顯微鏡數據采集帶寬足以覆蓋鈦藍寶石激光器的可調諧范圍和用于多光子顯微鏡的許多其它激光器的典型中心頻率。
Ca2+是重要的第二信使,對于調節細胞的生理反應具有重要的作用,開發和利用雙光子熒光顯微成像技術對Ca2+熒光信號進行觀測,可以從某些方面對有機體或細胞的變化機制進行分析,具有重要的意義。利用雙光子熒光顯微成像技術可以觀察細胞內用熒光探針標記的Ca2*的時間和空間的熒光圖像的變化,還可以觀察細胞某一層面或局部的(Ca2+)熒光圖像和變化。通過對單細胞的研究發現,Ca2+不僅在細胞局部區域間的分布是不均勻的,而且細胞內各局部區域的不同深度或層次間也存在不同程度的Ca2+梯差即所謂的空間Ca2梯差。
首代小型化雙光子顯微鏡在國際上獲得小鼠自由行為過程中大腦神經元和突觸的動態圖像后,我們成功研制了第二代小型化雙光子顯微鏡。它具有更大的成像視野和三維成像能力,可以清晰穩定地對自由活動小鼠三維腦區的數千個神經元進行成像,實現對同一批神經元的一個月追蹤記錄。通過對微光學系統的重新設計系統的。微物鏡工作距離延長至1mm,實現無創成像。內嵌可拆卸的快速軸向掃描模塊,可采集深度180微米的3D體成像和多平面快速切換的實時成像。該掃描模塊由一個快速的電動變焦透鏡和一對中繼透鏡組成,在不同深度成像時可保持放大倍率恒定。其變焦模塊重量,研究人員可根據實驗需求自由拆卸。此外,新版微型化成像探頭可整體即時拔插,極大地簡化了實驗操作,避免了長周期實驗時對動物的干擾。在重復裝卸探頭同一批神經元時,視場旋轉角小于,邊界偏差小于35微米。多光子顯微鏡的發展現狀及未來發展趨勢。
多光子成像系統提供的優勢包括了真正的三維成像、對活組織內部深處進行成像的能力以及消除平面外熒光的能力。使用這種方法進行成像,可以對斯托克斯位移非常短和/或效率非常低的熒光染料進行成像,甚至可以對樣品或組織中固有的熒光分子進行成像。多光子成像的缺點包括需要高峰值功率脈沖激光器,例如鎖模鈦:藍寶石激光器,并且直到現在,缺乏在整個發射范圍內提供足夠吞吐量的高性能濾光片。整個激光調諧范圍內的興趣和足夠的阻擋。雙光子顯微鏡采用長波長激發。美國激光掃描多光子顯微鏡代理商
多光子顯微鏡市場集中,由于投產生產的成本較高,技術難度大,目前涌現的新企業不多。美國激光掃描多光子顯微鏡代理商
快速光柵掃描有多種實現方式,使用振鏡進行快速2D掃描,將振鏡和可調電動透鏡結合在一起進行快速3D掃描,但可調電動透鏡由于機械慣性的限制在軸向無法快速進行焦點切換,影響成像速度,現可使用空間光調制器(SLM)代替。遠程聚焦也是一種實現3D成像的手段。在LSU模塊中,掃描振鏡進行橫向掃描,ASU模塊包括物鏡L1和反射鏡M,通過調控M的位置實現軸向掃描。該技術不僅可以校正主物鏡L2引入的光學像差,還可以進行快速的軸向掃描。想要獲得更多神經元成像,可以通過調整顯微鏡的物鏡設計來擴大FOV,但是具有大NA和大FOV的物鏡通常重量較大,無法快速移動以進行快速軸向掃描,因此大型FOV系統依賴于遠程聚焦、SLM和可調電動透鏡。美國激光掃描多光子顯微鏡代理商