2020年,TonmoyChakraborty等人提出了一種加快2PM軸向掃描速度的方法[2]。在光學顯微鏡中,物鏡或樣品的緩慢軸向掃描速度限制了體積成像的速度。近年來,通過使用遠程聚焦技術或電可調諧透鏡(ETL)已經實現了快速軸向掃描;但是,遠程聚焦中反射鏡的機械驅動會限制軸向掃描速度,ETL會引入球面像差和更高階像差,從而無法進行高分辨率成像。為了克服這些局限性,該組引入了一種新穎的光學設計,能將橫向掃描轉換為可用于高分辨率成像的無球差的軸向掃描。該設計有兩種實現方式,第一種能夠執行離散的軸向掃描,另一種能夠進行連續的軸向掃描。具體裝置如圖3a所示,由兩個垂直臂組成,每個臂中都有一個4F望遠鏡和一個物鏡。遠程聚焦臂包含一個檢流掃描鏡(GSM)和一個空氣物鏡(OBJ1),另一個臂(稱為照明臂)由一個水浸物鏡(OBJ2)構成。將這兩個臂對齊,以使GSM與兩個物鏡的后焦平面共軛。準直的激光束被偏振分束器反射到遠程聚焦臂中,GSM對其進行掃描,進而使得OBJ1產生的激光焦點進行橫向掃描。國內市場多光子顯微鏡銷售渠道。美國激光掃描多光子顯微鏡價格
多光子顯微優點:☆光損傷小:由于雙光子顯微鏡使用的是可見光或近紅外光作為激發光源,這一波段的光對細胞和組織的光損傷小,適用于長時間的研究;☆穿透能力強:相對于紫外光,可見光和近紅外光都具有更強的穿透能力,因而受生物組織散射的影響更小,解決對生物組織中深層物質的層析成像研究問題;☆高分辨率:由于雙光子吸收截面很小,只有在焦平面很小的區域內可以激發出熒光,雙光子吸收*局限于焦點處的體積約為波長3次方的范圍內;☆漂白區域小:由于激發只存在于交點處,所以焦點以外的區域都不會發生光漂白現象;☆熒光收集率高:與共聚焦成像相比,雙光子成像不需要光學濾波器,這樣就提高了對熒光的收集率,而收集率的提高直接導致圖像對比度的提高;☆圖像對比度高:由于熒光波長小于入射波長,因而瑞利散射產生的背景噪聲只有單光子激發時的1/16,降低了散射的干擾;☆光子躍遷具有很強的選擇激發性,所以可以對生物組織中一些特殊物質進行成像研究;☆避免組織自發熒光的干擾,獲得較強的樣品熒光:生物組織中的自發熒光物質的激發波長一般在350~560nm范圍內,采用近紅外或紅外波段的激光作為光源,能**降低生物組織對激發光吸收。美國布魯克多光子顯微鏡配置多光子顯微鏡涉及醫學、生物學、化學、物理學、電子學、工程學等學科,生產工藝相對復雜,進入門檻較高。
作為一個多學科交叉、知識密集、資金密集的高技術產業,多光子顯微鏡涉及醫學、生物學、化學、物理學、電子學、工程學等學科,生產工藝相對復雜,進入門檻較高,是衡量一個國家制造業和高科技發展水平的重要標準之一。過去的5年,多光子顯微鏡市場集中,由于投產生產的成本較高,技術難度大,目前涌現的新企業不多。顯微鏡作為一個傳統的高科技行業,其作用至今沒有被其他技術顛覆,只是不斷融合并發展相關技術,在醫療和其他精密檢測領域發揮著更大的作用。顯微鏡的商業化發展已進入成熟期,主要需求來自教學、生命科學的研究及精密檢測等,全球市場呈現平緩的增長態勢。然而,顯微鏡產品(如多光子顯微鏡、電子顯微鏡)正拉動市場需求,多光子顯微鏡市場發展潛力巨大。
多光子顯微鏡對成像深度的改善利用紅光或紅外光激發,光散射小(小粒子的散射與波長的四次方的成反比)。不需要***,能更多收集來自成像截面的散射光子。***不能區分由離焦區域或焦點區發射出的散射光子,多光子在深層成像信噪比好。單光子激發所用的紫外或可見光在光束到達焦平面之前易被樣品吸收而衰減,不易對深層激發。多光子熒光成像的特點。深度成像∶與共聚焦相比能更好地對厚散射物質成像。信噪比∶多光子吸收采用的波長是單光子吸收的2倍以上,所以顯微試樣中的瑞利散射更小,熒光測定的信噪比更高。觀察活細胞∶離子測量(i.e.Ca2+),GFP,發育生物學等—減少了光毒性和光漂白,能對細胞長時間觀察。全球多光子顯微鏡主要消費地區分析,包括消費量及份額等。
現代分子生物學技術的迅速發展和科技的進步,特別是隨著后基因組時代的到來,人們已經能夠根據需要建立各種細胞模型,為在體研究基因表達規律、分子間的相互作用、細胞的增殖、細胞信號轉導、誘導分化、細胞凋亡以及新的血管生成等提供了良好的生物學條件。然而,盡管人們利用現有的分子生物學方法,已經對基因表達和蛋白質之間的相互作用進行了深入、細致的研究,但仍然不能實現對蛋白質和基因活動的實時、動態監測。在細胞的生理過程中,基因、尤其是蛋白質的表達、修飾和相萬作用往往發生可逆的、動態的變化。目前的分子生物學方法還不能捕獲到蛋白質和基因的這些變化,但獲取這些信息對與研究基因的表達和蛋白質之間的相互作用又至關重要。因此,發展能用于、動態、實時、連續監測蛋白質和基因活動的方法是非常有必要的。生產和消費的角度分析多光子顯微鏡的主要生產地區、主要消費地區以及主要的生產商。模塊化多光子顯微鏡能量脈沖
世界多光子激光掃描顯微鏡產業主要布局在德國和日本,德國是徠卡顯微系統和蔡司。美國激光掃描多光子顯微鏡價格
針對雙光子熒光顯微鏡的特點,從理論上分析雙光子成像特點,并搭建一套時間、空間分辨率高,能實時、動態、多參數測量的雙光子熒光顯微鏡系統。具體系統應實現∶(1)能對不同染料的雙光子熒光進行探測;(2)用特定染料對樣品標記以后,能實現雙光子熒光的三維成像;(3)通過實驗的研究,改進雙光子熒光顯微成像系統;(4)在保證成像質量的前提下,簡化整個系統,使得實驗操作方便、安全。單光子激發熒光的過程,就是熒光分子吸收一個光子,從基態躍遷到激發態,躍遷以后,能量較大的激發態分子,通過內轉換把部分能量轉移給周圍的分子,自己回到比較低電子激發態的比較低振動能級。處于比較低電子激發態的比較低振動能級像在生物醫學光學成像研究中顯示了較大的優勢。而在顯微成像中,雙光子熒光顯微鏡憑其獨有的優點,成為研究細胞結構和功能檢測的重要工具。美國激光掃描多光子顯微鏡價格