單束掃描技術可以高速遍歷大視場(FOV)的神經組織:使用MPM對神經元進行成像時,通過隨機訪問掃描—即激光束在整個視場上的任意選定點上進行快速掃描—可以只掃描感興趣的神經元,這樣不僅避免掃描到任何未標記的神經纖維,還可以優化激光束的掃描時間。隨機訪問掃描(圖1)可以通過聲光偏轉器(AOD)來實現,其原理是將具有一個射頻信號的壓電傳感器粘在合適的晶體上,所產生的聲波引起周期性的折射率光柵,激光束通過光柵時發生衍射。通過射頻電信號調控聲波的強度和頻率從而可以改變衍射光的強度和方向,這樣使用1個AOD就可以實現一維橫向的任意點掃描,利用1對AOD,結合其他軸向掃描技術可實現3D的隨機訪問掃描。但是該技術對樣本的運動很敏感,易出現運動偽影。目前,快速光柵掃描即在FOV中進行逐行掃描,由于利用算法可以輕松解決運動偽影而被普遍的使用。多光子顯微鏡技術的優勢如何?又有哪些應用?美國模塊化多光子顯微鏡準確定位
世界多光子激光掃描顯微鏡產業主要布局在德國和日本,德國是以徠卡顯微系統和蔡司為,而日本以尼康和奧林巴斯公司為,2020年,上述企業占據著世界多光子激光掃描顯微鏡市場64.44%的市場份額,其發展戰略左右著多光子激光掃描顯微鏡市場的走向。目前世界市場對多光子激光掃描顯微鏡的需求在增長,中國市場這方面的需求增長更快,未來五年多光子激光掃描顯微鏡市場的發展在中國將具有很大的發展潛力。國內顯微鏡制造市場目前斷層嚴重。目前我國顯微鏡行業發展缺乏技術沉淀,20年以上經營積累的企業十分稀缺,深度精密制造、光學重要部件設計及工藝嚴重制約產業升級。目前中國顯微鏡中如多光子顯微鏡、共聚焦掃描和電子顯微鏡等主要集中在徠卡顯微系統、蔡司、尼康、奧林巴斯等國外企業。國內具備生產顯微鏡能力的企業屈指可數,若國內顯微鏡企業能打破技術壁壘,切入顯微鏡市場,企業的生產經營將騰躍至一個更高的格局。美國模塊化多光子顯微鏡準確定位中國市場多光子顯微鏡進出口貿易趨勢。
單光子激發熒光和雙光子激發熒光,是從熒光產生的機理上來區分的。而共焦則是熒光顯微鏡的一種結構,其目的是為了,通過共焦結構,提高整個熒光顯微鏡的空間分辨率。所以共焦熒光顯微鏡可以根據激發光源的不同,實現單光子共焦熒光成像或者雙光子共焦熒光成像。往往一個普通的雙光子熒光顯微鏡(沒有共焦結構)其空間分辨率也可以達到單光子共焦熒光顯微鏡的水平。這樣就可以簡化整個系統,相對來說,就提高了激發光源的利用率,以及熒光的探測效率,這個也是我們提倡雙光子熒光成像的原因之一。雙光子熒光共焦顯微鏡由于雙光子效應和共焦結構,分辨率則會更高,而我們通常說的共焦顯微鏡都是指單光子激發熒光的。
對兩個遠距離(相距大于1-2mm)的成像部位,通常使用兩條單獨的路徑進行成像;對于相鄰區域,通常使用單個物鏡的多光束進行成像。多光束掃描技術必須特別注意激發光束之間的串擾問題,這個問題可以通過事后光源分離方法或時空復用方法來解決。事后光源分離方法指的是用算法來分離光束消除串擾;時空復用方法指的是同時使用多個激發光束,每個光束的脈沖在時間上延遲,這樣就可以暫時分離被不同光束激發的單個熒光信號。引入越多路光束就可以對越多的神經元進行成像,但是多路光束會導致熒光衰減時間的重疊增加,從而限制了區分信號源的能力;并且多路復用對電子設備的工作速率有很高的要求;大量的光束也需要更高的激光功率來維持近似單光束的信噪比,這會容易導致組織損傷。多光子顯微鏡中,極短的激光脈沖聚焦在樣品上的緊密點上,激發熒光團產生圖像。
SternandJeanMarx在評論中說:祖家能夠在更為精細的層次研究樹突的功能,這在以前是完全不可能的。新的技術(如腦片的膜片鉗和雙光子顯微使人們對樹突的計算和神經信號處理中的作用有了更好的理解。他們解釋了是樹突模式和形狀多樣性,及其獨特的電、及其獨特的電化學特征使神經元完成了一系列的專門任務。雙光子與共聚焦在發育生物學中的應用雙光子∶每2.5分鐘掃描一次,觀察24小時,發育到桑椹胚和胚泡階段共聚焦∶每15分鐘掃描一次,觀察8小時后細胞分裂停止,不能發育到桑椹胚和胚泡階段共聚焦激發時的細胞存活率為多光子系統的10~20%。生產和消費的角度分析多光子顯微鏡的主要生產地區、主要消費地區以及主要的生產商。激光掃描多光子顯微鏡技術
OCT可以用于損傷修復監測。Yeh等用OCT、多光子顯微鏡。美國模塊化多光子顯微鏡準確定位
細胞在受到外界刺激時,隨著刺激時間的增長,即使刺激繼續存在,Ca2+熒光信號不但不會繼續增強,反而會減弱,直至恢復到未加刺激物時的水平。對于細胞受精過程中Ca2+熒光信號的變化情況,研究發現,配了在粘著過程中,Ca2+熒光信號未發生任何變化,而配子之間發生融合作用時,Ca2+熒光信號強度卻會出現一個不穩定的峰值,并可持續幾分鐘。這些現象,對研究受精發育的早期信號及Ca2+在卵細胞和受精卵的發育過程中的作用具有重要的意義。在其它一些生理過程如細胞分裂、胞吐作用等,Ca2+熒光信號強度也會發生很強的變化。美國模塊化多光子顯微鏡準確定位