傳統的寬場熒光顯微鏡由于光散射的影響,只能夠對大腦淺層的神經元或在離體組織上進行成像,共聚焦顯微鏡由于光損傷較大,一般也只用于離體鈣成像。隨著熒光顯微鏡技術的迅速發展,在體鈣成像技術得到了蓬勃發展。雙光子熒光顯微鏡能夠在進行活動動物成像的時候實現高分辨率和高信噪比。例如,用雙光子顯微鏡對海馬樹突棘的鈣離子信號進行成像,研究神經元突觸后長時程yizhi(Wangetal.,2000);觀察活動小鼠運動皮層神經元在嗅覺選擇任務中刺激相關電位(Komiyamaetal.,2010)等等。不過,這些實驗還是需要對動物進行麻醉和固定,而神經科學領域很多研究更希望能夠對自由活動的動物進行研究。長時間追蹤相同細胞,進行可重復的科學研究對自由行為動物進行慢性鈣成像研究。南京熒光顯微鈣成像參考價
想要對鈣離子的動態變化進行有效的檢測,鈣離子指示劑的選擇顯得尤為重要。鈣離子熒光指示劑在未結合鈣離子前幾乎無熒光,與鈣離子結合后,熒光強度明顯增強。利用這一原理,可以通過指示劑的信號強弱來觀察細胞內鈣離子濃度水平的變化。根據激發光波長范圍,鈣離子指示劑可以分為可見光激發和紫外光激發,而根據其工作原理又可以分為比率和非比率型。常見的鈣離子指示劑有,紫外光激發Ca2+熒光探針、可見光激發Ca2+熒光探針、轉基因Ca2+指示劑。深圳動物神經元鈣成像nVoke2.0利用鈣離子指示劑檢測組織或細胞內鈣離子濃度,進而反應組織或細胞內某些活動或反應。
科學家利用鈣成像技術記錄大腦活動。隨著功能光學成像技術的發展,神經學家們已經可以研究腦區和神經元內部的工作情況。功能鈣成像技術就是其中之一,其主要原理是將外源性熒光信號和生理現象耦合起來——通過熒光染料信號的改變反映細胞內游離鈣離子濃度,以此daibiao細胞的功能狀態。目前它被廣泛應用于實時監測一群相關神經元內鈣離子的變化,從而判斷其功能活動。該技術的出現使得科學家可以親眼目睹神經信號在神經網絡之中時間和空間上的傳遞穿梭。
利用鈣成像技術記錄大腦活動。隨著功能光學成像技術的發展,神經學家們已經可以研究腦區和神經元內部的工作情況。功能鈣成像技術就是其中之一,其主要原理是將外源性熒光信號和生理現象耦合起來——通過熒光染料信號的改變反映細胞內游離鈣離子濃度,以此daibiao細胞的功能狀態。目前它被廣泛應用于實時監測一群相關神經元內鈣離子的變化,從而判斷其功能活動。該技術的出現使得科學家可以親眼目睹神經信號在神經網絡之中時間和空間上的傳遞穿梭。雙光子熒光顯微鏡能夠在進行活動動物成像的時候實現高分辨率和高信噪比。
雙光子顯微成像技術是近些年發展起來的結合了共聚焦激光掃描顯微鏡和雙光子激發技術的一種新型非線性光學成像方法,采用長波激發,能對組織進行深層次成像。常用的比較好激發波長大多位于800-900nm,而水、血液和固有組織發色團對這個波段的光吸收率低,此外散射的激發光子不能激發樣品,因此背景第,光損傷小,適用于在體檢測。雙光子熒光成像技術能準確定位細胞內置入的微電極位置,從而觀察胞體、樹突甚至單個樹突棘的活性。研究者可完整的觀察神經組織的gaofen辨熒光圖像,甚至可以分辨神經細胞單個樹突棘中的鈣分布。有了鈣成像技術,原本悄無聲息的神經活動就變成了一幅斑斕閃爍的壯觀影像。熒光鈣成像動物行為學
進行鈣測定必須借助外界的某種可視化物質作為它的標志物。南京熒光顯微鈣成像參考價
紫外光激發Ca2+熒光探針:Fura-2和Indo-1都是紫外光激發的雙波長Ca2+熒光指示劑,也是目前較常用的比率型鈣離子熒光探針。與其他代的熒光指示劑相比,它們的熒光信號更強,對Ca2+的選擇性也更強。比率指示劑會在與Ca2+結合后會改變吸收/發射特性。以雙波長激發指示劑Fura-2為例。如圖2所示,低Ca2+濃度下,Fura-2在~380nm處激發,高Ca2+濃度下,在~340nm處激發。光譜由兩個峰組成:左側較短波長的吸收峰隨Ca2+濃度的增加而增大,右側較長波長的吸收峰隨Ca2+濃度的增加而減小。通過340/380nm交替激發,獲取在510nm處對應的發射光熒光強度的比率,就可以對Ca2+濃度進行定量的測量。因為Fura-2結果準確,且不易被漂白,所以得到了普遍使用。南京熒光顯微鈣成像參考價