為了承受加工過程中的切削力、振動和熱變形等因素的影響,立式加工中心采用了堅固穩定的結構設計。機床主體通常采用鑄鐵或焊接鋼結構,經過時效處理以消除內應力,確保機床在長期使用過程中保持高精度和穩定性。立柱、床身等關鍵部件的設計經過精心優化,具有良好的剛性和抗振性能,能夠有效減少加工過程中的振動和變形,保證加工精度的一致性。例如,在進行重切削加工時,穩定的機床結構可以使刀具在切削過程中保持平穩,避免因機床振動而導致的加工表面粗糙度增加和刀具損壞等問題,從而提高加工質量和生產效率。數控系統支持在線編程與遠程監控,方便技術人員隨時隨地對加工過程進行管理。精密立式加工中心 立式加工中心以其高精度加工而聞...
在現代制造業的舞臺上,立式加工中心扮演著極為關鍵的角色,其工作原理猶如一場精妙絕倫的機械之舞,融合了機械、電氣、數控等多領域技術,實現了對各種復雜零件的高效、高精度加工。 立式加工中心主要由床身、立柱、主軸箱、工作臺、刀庫、控制系統以及驅動系統等部分構成。床身作為整個機床的基礎支撐結構,為其他部件提供穩定的安裝平臺,并承受加工過程中的各種力。立柱垂直安裝于床身上,用于支撐主軸箱,確保主軸在垂直方向上的運動精度。主軸箱內部裝有主軸電機和主軸部件,主軸在電機的驅動下高速旋轉,帶動刀具進行切削作業,其轉速范圍,可根據不同的加工材料和工藝要求靈活調整。 立式加工中心的刀具庫猶如一座刀具的寶庫...
工作臺位于床身之上,能夠在 X、Y 兩個水平方向上精確移動,實現工件在平面內的定位與進給。一些立式加工中心的工作臺還具備旋轉功能(C 軸),可進行多軸聯動加工,進一步拓展了加工的復雜性和靈活性。刀庫則是存儲刀具的裝置,其容量從幾把到上百把不等,通過自動換刀機構(ATC),能夠在加工過程中快速、準確地更換刀具,以滿足不同工序的需求。 控制系統是立式加工中心的 “大腦”,它接收并解析操作人員編寫的加工程序,將其轉化為各個坐標軸的運動指令以及主軸的轉速、進給速度等控制信號。驅動系統則根據控制系統的指令,精確驅動主軸箱在 Z 軸方向上的上下移動、工作臺在 X、Y 軸方向上的平面移動以及刀庫的...
傳統機床功能相對單一,通常只能完成特定類型的加工工序,如車床主要用于回轉體零件的車削加工,銑床側重于平面和輪廓的銑削。當一個零件需要多種加工工藝時,就需要在不同機床之間頻繁轉換,這不僅增加了工件的裝夾次數和定位誤差,還耗費大量的輔助時間。立式加工中心則集銑削、鉆孔、鏜孔、攻絲等多種加工功能于一體,通過自動換刀裝置(ATC)和數控編程,可以在一次裝夾工件的情況下,按照預先設定的程序自動完成多種工序的連續加工。這種多功能集成和自動化加工方式,極大減少了加工過程中的人為干預,提高了加工效率和精度穩定性,同時也降低了操作人員的勞動強度。動態響應性能出色,能在高速切削時迅速調整各軸運動,適應復雜多變的加...
刀具安裝與夾緊: 當新刀具被送到主軸位置后,主軸內部的夾緊機構會將刀柄牢固地夾緊。一般通過拉桿或液壓裝置來實現夾緊。拉桿式夾緊機構通過機械力將刀柄拉緊,使其與主軸錐孔緊密貼合。液壓夾緊機構則利用液壓油的壓力,使夾緊裝置抱緊刀柄,這種方式能夠提供更均勻的夾緊力,有利于提高刀具的安裝精度和穩定性。在刀具安裝完成后,主軸開始旋轉,帶動刀具進行加工。 刀具系統的自動換刀功能使得立式加工中心能夠在一次裝夾工件的情況下,完成多種不同工序的加工。這避免了在不同機床之間頻繁更換工件和刀具,極大的減少了加工的輔助時間。例如,在加工一個復雜的模具時,從粗銑、精銑到鉆孔、攻絲等工序可以連續進行,加工...
汽車變速箱殼體的形狀復雜,內部有各種齒輪、軸等零部件的安裝孔和槽,對精度要求極高。 某汽車零部件制造企業運用立式加工中心來加工變速箱殼體。在加工前,通過CAD/CAM軟件進行三維建模和數控編程,精確規劃刀具路徑和加工參數。在加工過程中,由于立式加工中心的多軸聯動功能(如四軸或五軸聯動),能夠對變速箱殼體的復雜曲面和斜孔進行高效、精細的加工。例如,在加工變速箱殼體內部的斜油孔時,通過旋轉軸和直線軸的聯動,確保鉆頭能夠以正確的角度進行鉆孔,避免了傳統加工方法可能出現的鉆孔偏差。而且,立式加工中心的高精度定位系統可以保證各個安裝孔之間的位置精度,其位置度公差可以控制在±0.02mm以內。自...
立式加工中心的工作起始于數控編程。編程人員根據零件的設計圖紙,運用專業的數控編程軟件或手動編寫數控代碼,詳細描述加工過程中刀具的路徑、切削速度、進給量、主軸轉速等工藝參數。這些數控代碼以特定的格式編寫,如常用的G代碼(用于控制機床的運動方式)和M代碼(用于控制機床的輔助功能,如主軸正反轉、切削液開關等)。當編寫好的加工程序輸入到立式加工中心的控制系統后,控制系統首先對程序進行語法檢查和預處理,確保程序的正確性和完整性。然后,在加工過程中,控制系統逐行讀取數控代碼,并將其解析為各個坐標軸的運動指令和其他控制信號。例如,當遇到G01X100.Y50.Z-20.F100.這樣的代碼時,控制系統會識別...
現代立式加工中心注重人機交互體驗與智能化功能的開發。其操作界面簡潔直觀,采用了圖形化編程、觸摸式顯示屏等技術,使操作人員能夠輕松地進行機床操作、程序編輯和參數設置。同時,借助計算機技術和傳感器技術,立式加工中心具備了智能化的加工監控與診斷功能。在加工過程中,它可以實時監測刀具的磨損情況、機床的運行狀態以及加工質量等信息,并通過內置的智能算法進行分析和處理。一旦發現異常情況,如刀具破損、機床過熱或加工精度偏差過大等,機床能夠及時發出警報并采取相應的措施,如自動換刀、調整切削參數或停機檢修等,有效避免了加工事故的發生,提高了加工過程的安全性和可靠性,降低了廢品率和生產成本。在航空航天零部件制造中,...
在高速化方面,高速主軸技術、快速進給系統以及高性能數控系統的進一步發展,使得立式加工中心的切削速度和加工效率大幅提升。高速主軸的轉速不斷提高,部分機床的主軸轉速已經超過 100,000rpm,能夠實現高速銑削、鉆削等加工工藝。同時,快速進給系統的加速度和速度也明顯增加,使得機床在加工過程中能夠快速響應,減少加工時間。此外,高性能數控系統能夠實現高速、高精度的插補運算和多軸聯動控制,進一步提高了機床的加工效率和復雜零件的加工能力。立式加工中心在能源裝備制造領域,為渦輪機葉片、發電機轉子等部件的加工發揮關鍵作用。江蘇高效立式加工中心按需定制立式加工中心的特點之一便是其優異的高精度加工能力。它采用了...
立式加工中心作為現代機械加工領域的重要設備之一,其發展歷程充滿了創新與變革,深刻地影響了制造業的格局與效率。從早期的雛形到如今的高精度、智能化機床,它的演變見證了科技進步與工業需求的緊密結合。 立式加工中心的發展歷程是一部科技進步與工業需求相互促進的歷史。從剛開始的雛形到如今的高精度、智能化機床,它在制造業中發揮著越來越重要的作用。面對未來的挑戰和機遇,相信立式加工中心將繼續創新和發展,為全球制造業的繁榮做出更大的貢獻。 數控編程賦予了立式加工中心無限的加工靈活性,可輕松應對各種復雜形狀的零件加工。上海可靠立式加工中心售后服務 液壓系統保養: 對于配備液壓系統的立式加工中心,...
在數控指令的驅動下,立式加工中心開始進行刀具路徑規劃與切削加工。首先,根據加工工藝要求,刀庫通過自動換刀機構選取合適的刀具并安裝到主軸上。然后,主軸帶動刀具高速旋轉,工作臺和主軸箱按照預定的路徑和速度進行運動,使刀具逐漸靠近工件并開始切削。在切削過程中,刀具沿著編程設定的路徑對工件進行銑削、鉆孔、鏜孔、攻絲等加工操作。例如,在銑削平面時,刀具以一定的轉速和進給速度在工件表面進行往復運動,去除多余的材料,形成平整的平面;在鉆孔時,主軸帶動鉆頭高速旋轉并向下進給,在工件上鉆出所需的孔。同時,控制系統會實時監測加工過程中的各種參數,如切削力、主軸負載、刀具磨損等,并根據預設的閾值進行調整和優化。如果...
盡管立式加工中心在過去幾十年中取得了巨大的發展成就,但它也面臨著一些挑戰。首先,隨著全球制造業競爭的日益激烈,對機床成本和性價比的要求越來越高。如何在保證機床性能和精度的前提下,降低成本,提高市場競爭力,是機床制造商面臨的重要問題。其次,環保和節能要求也對立式加工中心的發展提出了新的挑戰。在加工過程中,機床需要消耗大量的能源和切削液等資源,如何減少能源消耗和環境污染,開發綠色環保的加工工藝和設備,是未來發展的方向之一。高速旋轉的主軸,是立式加工中心釋放強大切削力的動力源,賦予金屬材料新的形狀。高速立式加工中心大概價格 立式加工中心以其高精度加工而聞名,為了確保加工精度,機床在設計和制造過程中...
立式加工中心的冷卻系統維護 檢查冷卻水箱的水位,不足時及時補充冷卻液。冷卻液不僅能起到冷卻刀具和工件的作用,還具有防銹和潤滑的功能。要定期檢測冷卻液的濃度和酸堿度,根據檢測結果及時調整或更換冷卻液。通常,冷卻液的濃度應保持在 5% - 10% 之間,酸堿度應維持在合適的范圍。清理冷卻泵和水管中的雜物,防止堵塞。檢查冷卻噴頭是否正常工作,如有堵塞或損壞應及時清理或更換,確保冷卻液能夠均勻地噴射到刀具和工件加工部位。 強大的多軸聯動能力,使立式加工中心可在復雜曲面加工中展現出優異的工藝水準。浙江立式加工中心大概價格 刀柄是連接刀具和主軸的關鍵部件,它的一端與主軸內錐孔配合,另一端用于安裝...
對于一些復雜的零件,如航空發動機葉片、汽車模具等,往往需要立式加工中心具備多軸聯動加工能力。多軸聯動是指在加工過程中,除了X、Y、Z三個直線坐標軸外,還同時控制工作臺的旋轉軸(C軸)或主軸頭的擺動軸(A、B軸)等,使刀具能夠在空間內以任意角度和軌跡運動,從而實現對復雜曲面的精確加工。在多軸聯動加工中,數控系統需要進行更為復雜的坐標變換和插補運算。它根據零件的三維模型和加工工藝要求,計算出各個坐標軸在不同時刻的運動位置和速度,確保刀具始終與工件的加工表面保持比較好的接觸狀態。例如,在加工航空發動機葉片的復雜曲面時,通過X、Y、Z、A、C等多軸的聯動控制,刀具可以沿著葉片的曲面輪廓進行連續、平滑的...
除了高精度和高速化,智能化也成為了立式加工中心發展的重要趨勢。隨著人工智能、物聯網、大數據等技術在制造業中的應用逐漸深入,立式加工中心開始具備智能化的功能。例如,通過傳感器實時監測機床的運行狀態、刀具磨損情況、加工質量等信息,并將這些信息反饋給數控系統,數控系統根據預設的算法進行分析和處理,自動調整加工參數、優化加工工藝,實現智能化的加工過程。智能化的立式加工中心還能夠實現遠程監控與診斷,操作人員可以通過互聯網遠程監控機床的運行情況,及時發現并解決問題,提高了機床的維護效率和生產管理水平。立式加工中心的主軸轉速范圍寬廣,可根據不同材料和加工工藝精確匹配切削速度。浙江大型立式加工中心廠家傳統機床...
20世紀60年代,電子技術和計算機技術的快速發展為立式加工中心的進步提供了強大動力。數控技術(NC)開始應用于機床領域,使得機床的運動控制更加精確和靈活。這一時期,立式加工中心的控制系統逐漸從簡單的硬接線邏輯電路向基于計算機的數控系統轉變。數控系統能夠根據預先編寫的程序,精確控制機床各坐標軸的運動,實現復雜零件的自動化加工。與此同時,刀具交換技術也取得了重要突破。自動換刀裝置(ATC)的設計不斷改進,換刀速度明顯提高,刀具庫容量逐漸增大。例如,一些先進的立式加工中心開始采用鏈式刀具庫或圓盤式刀具庫,能夠容納數十把甚至上百把刀具,擴展了機床的加工范圍。此外,主軸技術也得到了發展,高速主軸的出現使...
工作臺運動卡滯 故障現象:工作臺在移動過程中出現卡頓、不順暢的現象,有時甚至無法移動。原因分析:導軌面潤滑不良,有雜物或劃痕。絲杠與導軌不平行,導致工作臺受力不均。工作臺的驅動電機故障或傳動機構損壞,如聯軸器松動、齒輪磨損等。解決方案:清理導軌面,去除雜物和劃痕,重新涂抹潤滑油,確保導軌潤滑良好。檢查絲杠與導軌的平行度,通過調整絲杠的安裝位置或機床的地腳螺栓來校正。檢查驅動電機的運行情況,緊固聯軸器,更換磨損的齒輪等傳動部件,恢復工作臺的正常運動。 其緊湊的布局,讓立式加工中心在有限的空間內實現了多功能加工部件的高效整合。江蘇耐用立式加工中心檢修 刀具系統的高精度刀柄和精確的換刀裝...
汽車變速箱殼體的形狀復雜,內部有各種齒輪、軸等零部件的安裝孔和槽,對精度要求極高。 某汽車零部件制造企業運用立式加工中心來加工變速箱殼體。在加工前,通過CAD/CAM軟件進行三維建模和數控編程,精確規劃刀具路徑和加工參數。在加工過程中,由于立式加工中心的多軸聯動功能(如四軸或五軸聯動),能夠對變速箱殼體的復雜曲面和斜孔進行高效、精細的加工。例如,在加工變速箱殼體內部的斜油孔時,通過旋轉軸和直線軸的聯動,確保鉆頭能夠以正確的角度進行鉆孔,避免了傳統加工方法可能出現的鉆孔偏差。而且,立式加工中心的高精度定位系統可以保證各個安裝孔之間的位置精度,其位置度公差可以控制在±0.02mm以內。自...
如果立式加工中心將長期閑置(超過一個月),除了進行上述常規的維護保養工作外,還需采取以下特殊措施: 對機床進行清潔、潤滑后,在工作臺、導軌等金屬表面涂抹防銹油,防止生銹。定期對機床進行通電空運行,一般每周至少通電一次,每次運行30分鐘以上。 通電空運行可以使機床電氣元件和運動部件得到適當的預熱和潤滑,防止受潮和生銹,同時也能及時發現潛在的故障隱患。將機床的坐標軸移動到中間位置,避免因長期處于極限位置而導致絲杠、導軌等部件變形。用塑料薄膜或防塵罩將機床整體覆蓋,防止灰塵進入機床內部。 立式加工中心的維護與保養是一項系統性、長期性的工作。通過建立完善的維護保養制度,嚴格按照要...
汽車變速箱殼體的形狀復雜,內部有各種齒輪、軸等零部件的安裝孔和槽,對精度要求極高。 某汽車零部件制造企業運用立式加工中心來加工變速箱殼體。在加工前,通過CAD/CAM軟件進行三維建模和數控編程,精確規劃刀具路徑和加工參數。在加工過程中,由于立式加工中心的多軸聯動功能(如四軸或五軸聯動),能夠對變速箱殼體的復雜曲面和斜孔進行高效、精細的加工。例如,在加工變速箱殼體內部的斜油孔時,通過旋轉軸和直線軸的聯動,確保鉆頭能夠以正確的角度進行鉆孔,避免了傳統加工方法可能出現的鉆孔偏差。而且,立式加工中心的高精度定位系統可以保證各個安裝孔之間的位置精度,其位置度公差可以控制在±0.02mm以內。自...
進入半精加工和精加工階段,更換為小直徑、高硬度的刀具,通過五軸聯動加工,使刀具能夠沿著葉片的復雜曲面進行精確的切削運動。數控系統根據編程指令,精確控制主軸的轉速、進給速度以及各坐標軸的運動軌跡,保證葉片的曲面精度和尺寸公差。例如,在加工葉片的葉身曲面時,通過A、C軸的聯動,使刀具始終與曲面保持比較好的接觸角度,加工出的曲面粗糙度達到Ra0.8μm以下,尺寸精度控制在±0.01mm以內。 在加工過程中,高壓冷卻系統持續向切削區域噴射冷卻液,有效降低了切削溫度,減少了刀具磨損,提高了刀具壽命。同時,刀具檢測系統實時監測刀具的磨損情況,當刀具磨損達到設定閾值時,自動提醒操作人員更換刀具,避...
立式加工中心的工作起始于數控編程。編程人員根據零件的設計圖紙,運用專業的數控編程軟件或手動編寫數控代碼,詳細描述加工過程中刀具的路徑、切削速度、進給量、主軸轉速等工藝參數。這些數控代碼以特定的格式編寫,如常用的G代碼(用于控制機床的運動方式)和M代碼(用于控制機床的輔助功能,如主軸正反轉、切削液開關等)。當編寫好的加工程序輸入到立式加工中心的控制系統后,控制系統首先對程序進行語法檢查和預處理,確保程序的正確性和完整性。然后,在加工過程中,控制系統逐行讀取數控代碼,并將其解析為各個坐標軸的運動指令和其他控制信號。例如,當遇到G01X100.Y50.Z-20.F100.這樣的代碼時,控制系統會識別...
數控系統報警故障現象:數控系統顯示各種報警信息,如坐標軸超程報警、刀具破損報警等。原因分析:機床坐標軸實際位置超出了設定的行程范圍,可能是由于程序錯誤或手動操作失誤。刀具在加工過程中發生破損或磨損嚴重,觸發了刀具檢測裝置的報警信號。數控系統的參數設置不正確,如進給速度、主軸轉速等參數超出了機床的允許范圍。解決方案:對于坐標軸超程報警,首先將機床切換到手動模式,按下超程解除按鈕,然后將坐標軸移動到安全位置,檢查加工程序,修正錯誤的坐標值,防止再次超程。當出現刀具破損報警時,停止機床運行,檢查刀具的磨損和破損情況,更換刀具后,復位報警信息,繼續加工。對照機床的參數手冊,檢查數控系統的參數設置,將錯...
機械部件調整 每 3 - 6 個月對機床的坐標軸進行定位精度和重復定位精度檢測。如果發現精度偏差超出允許范圍,應通過調整絲杠螺母間隙、導軌鑲條松緊度等方式進行補償。對于高精度要求的立式加工中心,可能需要借助激光干涉儀等專業測量設備進行精度校準。檢查主軸的徑向跳動和軸向竄動,一般使用千分表進行測量。若跳動量過大,應檢查主軸軸承的磨損情況,必要時更換軸承。同時,對主軸的傳動皮帶進行張緊度檢查和調整,確保主軸的動力傳輸穩定。對工作臺的水平度進行檢查和調整,以保證工件裝夾后的加工精度。可以使用水平儀放置在工作臺的不同位置進行測量,根據測量結果通過調整機床地腳螺栓的高度來校正工作臺水平度。 工...
立式加工中心以其高精度加工而聞名,為了確保加工精度,機床在設計和制造過程中采用了多種精度控制措施,并配備了先進的誤差補償技術。 在硬件方面,采用高精度的滾珠絲杠、直線導軌、主軸軸承等關鍵部件,提高機床的運動精度和定位精度。同時,通過優化機床的結構設計,增強其剛性和穩定性,減少加工過程中的振動和變形。在軟件方面,利用激光干涉儀、球桿儀等高精度測量儀器對機床的幾何精度進行檢測和校準,并將測量得到的誤差數據輸入到數控系統中。數控系統根據這些誤差數據,在加工過程中實時對坐標軸的運動進行補償,修正因機床幾何誤差、熱變形、刀具磨損等因素導致的加工誤差。 立式加工中心的工作原理是一個高度集成...
冷卻系統故障 冷卻泵故障故障現象:冷卻泵不工作或流量不足,無法有效冷卻刀具和工件。原因分析:冷卻泵電機損壞,如電機繞組短路或斷路。冷卻泵的葉輪堵塞或損壞,影響其抽水能力。冷卻水管路堵塞或泄漏,導致冷卻水流不暢或流失。解決方案:檢測冷卻泵電機,維修或更換損壞的電機。清理冷卻泵的葉輪,去除雜物,若葉輪損壞則更換葉輪。檢查冷卻水管路,疏通堵塞的管路,修復泄漏點,確保冷卻液正常循環。 冷卻液變質故障現象:冷卻液出現異味、變色或滋生細菌,影響冷卻效果和機床部件的防銹性能。原因分析:冷卻液長時間未更換,其中的添加劑消耗殆盡。機床加工過程中混入了雜質,如切削油、金屬屑等,導致冷卻液污染。解決...
進入半精加工和精加工階段,更換為小直徑、高硬度的刀具,通過五軸聯動加工,使刀具能夠沿著葉片的復雜曲面進行精確的切削運動。數控系統根據編程指令,精確控制主軸的轉速、進給速度以及各坐標軸的運動軌跡,保證葉片的曲面精度和尺寸公差。例如,在加工葉片的葉身曲面時,通過A、C軸的聯動,使刀具始終與曲面保持比較好的接觸角度,加工出的曲面粗糙度達到Ra0.8μm以下,尺寸精度控制在±0.01mm以內。 在加工過程中,高壓冷卻系統持續向切削區域噴射冷卻液,有效降低了切削溫度,減少了刀具磨損,提高了刀具壽命。同時,刀具檢測系統實時監測刀具的磨損情況,當刀具磨損達到設定閾值時,自動提醒操作人員更換刀具,避...
立式加工中心的工作起始于數控編程。編程人員根據零件的設計圖紙,運用專業的數控編程軟件或手動編寫數控代碼,詳細描述加工過程中刀具的路徑、切削速度、進給量、主軸轉速等工藝參數。這些數控代碼以特定的格式編寫,如常用的G代碼(用于控制機床的運動方式)和M代碼(用于控制機床的輔助功能,如主軸正反轉、切削液開關等)。當編寫好的加工程序輸入到立式加工中心的控制系統后,控制系統首先對程序進行語法檢查和預處理,確保程序的正確性和完整性。然后,在加工過程中,控制系統逐行讀取數控代碼,并將其解析為各個坐標軸的運動指令和其他控制信號。例如,當遇到G01X100.Y50.Z-20.F100.這樣的代碼時,控制系統會識別...
主軸振動故障現象:主軸在旋轉過程中出現明顯的振動,影響加工精度。 原因分析:主軸動平衡不良,可能是由于刀具安裝不平衡、主軸部件松動或受損。傳動皮帶松弛或磨損不均勻,導致動力傳遞不穩定。 主軸電機故障,如電機內部繞組短路或斷路,引起電機運轉不平衡。 解決方案:重新對刀具進行動平衡校正,檢查主軸部件的連接螺栓是否緊固,如有松動及時擰緊。若主軸部件受損,需進行修復或更換。 調整或更換傳動皮帶,確保皮帶張緊度適中且磨損均勻。使用萬用表等工具檢測主軸電機的繞組電阻,判斷電機是否故障。 若電機故障,應維修或更換電機。 立式加工中心的加工數據可實時記錄與分析,為優化加工工藝...
導軌鑲條調整: 導軌鑲條用于調整導軌副的間隙,保證運動部件的平穩性和精度。如果機床在運動過程中出現爬行、振動或精度不穩定等現象,可能是導軌鑲條間隙不當。以矩形導軌為例,鑲條通常有平鑲條和斜鑲條兩種類型。對于平鑲條調整,可通過旋動鑲條側面的調整螺釘,使鑲條在導軌的鑲條槽內移動,從而改變導軌與運動部件之間的間隙。斜鑲條則是通過旋動斜鑲條端部的調整螺母,使鑲條產生軸向位移,進而調整間隙。在調整時,要邊調整邊用塞尺檢查間隙大小,一般導軌副的間隙應控制在 0.02 - 0.05mm 之間。調整完成后,要進行多次往復運動測試,觀察運動是否平穩,同時再次進行精度檢測,確保調整后的導軌精度符合要求。...