增材制造技術(shù),尤其是基于金屬粉末的 3D 打印技術(shù),為金屬粉末燒結(jié)板的制造帶來了性的變化。與傳統(tǒng)成型工藝相比,3D 打印能夠直接根據(jù)三維模型將金屬粉末逐層堆積并燒結(jié)成型,實現(xiàn)復(fù)雜形狀燒結(jié)板的快速制造。在航空航天領(lǐng)域,利用選區(qū)激光熔化(SLM)技術(shù)制造航空發(fā)動機的復(fù)雜冷卻通道燒結(jié)板。SLM 技術(shù)能夠精確控制激光能量,使金屬粉末在局部區(qū)域快速熔化并凝固,形成具有精細內(nèi)部結(jié)構(gòu)的燒結(jié)板。這種冷卻通道燒結(jié)板可以根據(jù)發(fā)動機的熱流分布進行優(yōu)化設(shè)計,有效提高冷卻效率,降低發(fā)動機溫度,提升發(fā)動機的性能和可靠性。與傳統(tǒng)制造方法相比,3D 打印制造的冷卻通道燒結(jié)板重量可減輕 15% - 20%,且制造周期大幅縮短,...
在球磨機中,金屬物料與研磨介質(zhì)(如鋼球)一同置于旋轉(zhuǎn)的筒體中。筒體轉(zhuǎn)動時,研磨介質(zhì)隨筒體上升到一定高度后落下,對物料產(chǎn)生沖擊和研磨作用,使物料逐漸破碎成粉末。球磨機的優(yōu)點是能夠處理各種硬度的金屬材料,且可通過調(diào)整研磨時間、研磨介質(zhì)的種類和數(shù)量等參數(shù),控制粉末的粒度。但其缺點是粉末形狀不規(guī)則,粒度分布較寬,在粉碎過程中容易引入雜質(zhì),如設(shè)備部件的磨損碎屑等。棒磨機則是利用棒作為研磨介質(zhì),其工作原理與球磨機類似,但由于棒的接觸方式和運動軌跡與球不同,在粉碎過程中對物料的選擇性破碎作用更強,能夠獲得粒度相對更均勻的粉末。振動磨通過高頻振動使研磨介質(zhì)與物料在研磨腔內(nèi)劇烈碰撞和摩擦,從而實現(xiàn)物料的粉碎。振...
1909年,美國紐約州的庫利奇發(fā)明拔制電燈鎢絲,這一事件極大地推動了粉末冶金的發(fā)展。隨后在1923年,粉末冶金硬質(zhì)合金出現(xiàn),對機械加工領(lǐng)域產(chǎn)生重大影響,也間接促使金屬粉末燒結(jié)技術(shù)得到更多關(guān)注和研究。在這一時期,對于金屬粉末的制備方法有了更多創(chuàng)新,如機械粉碎法、霧化法、還原法、電解法等逐漸成熟,為獲得不同特性的金屬粉末提供了可能,進而推動了金屬粉末燒結(jié)板制造工藝的改進。隨著粉末制備技術(shù)的進步,燒結(jié)工藝也不斷優(yōu)化。人們開始認識到燒結(jié)溫度、時間、氣氛等因素對燒結(jié)板性能的重要影響,并進行了大量實驗研究。通過控制這些因素,能夠在一定程度上提高燒結(jié)板的密度、強度等性能,使其應(yīng)用領(lǐng)域從簡單的裝飾品制作拓展到...
強度:通過合理設(shè)計合金成分和優(yōu)化燒結(jié)工藝,金屬粉末燒結(jié)板可以獲得較高的強度。如粉末冶金高速鋼燒結(jié)板在機械加工領(lǐng)域展現(xiàn)出良好的耐磨性和度,能夠承受較大的載荷。硬度:硬度與材料成分和燒結(jié)后的組織結(jié)構(gòu)密切相關(guān)。一般來說,含有硬質(zhì)相的合金粉末燒結(jié)板硬度較高,適用于需要耐磨的應(yīng)用場景,如礦山機械中的一些部件采用高硬度的金屬粉末燒結(jié)板制造。韌性:在保證一定強度和硬度的前提下,通過調(diào)整工藝和成分,也可以使燒結(jié)板具有較好的韌性,避免在使用過程中發(fā)生脆性斷裂。例如,在一些承受沖擊載荷的零件中,需要燒結(jié)板具備良好的韌性。設(shè)計含光致變色材料的金屬粉末,讓燒結(jié)板的顏色隨光照變化。蘇州金屬粉末燒結(jié)板供應(yīng)商金屬粉末燒結(jié)板...