單分子檢測用PDMS芯片的超凈加工與表面修飾:單分子檢測對芯片表面潔凈度與非特異性吸附控制要求極高,公司建立了萬級潔凈車間環境下的PDMS芯片超凈加工流程。從硅模清洗(采用氧等離子體處理去除有機殘留)到PDMS預聚體真空脫氣(真空度<10Pa),每個環節均嚴格...
公司獨特的MEMS多重轉印工藝:將硅母模上的微結構通過紫外固化膠轉印至硬質塑料,可在10個工作日內完成從設計到成品的全流程開發。以器官芯片為例,通過該工藝制造的PMMA多層芯片,集成血管內皮屏障與組織隔室,可模擬肺、肝等的生理功能,用于藥物毒性評估時,數據一致...
完善、高標準的PDMS芯片生產產線:公司自建的PDMS芯片標準化產線,采用全自動混膠、真空脫泡與高溫固化工藝,確保芯片力學性能(彈性模量1-3MPa)與透光率(>92%)的高度一致性。通過精密模具(公差±2μm)與等離子體親水化處理,產線可批量生產單分子檢測芯...
通過微流控芯片檢測,有助于改進診斷性能、發現尚未被識別的致病性自身抗體。隨著微流控免疫芯片的推廣,自身抗體檢測成為微流控免疫芯片的重要研究方向之一。此類芯片的設計不同于其他免疫芯片,用于自身抗體檢測的微流控芯片須將自身抗原固定在芯片表面。Matsudaira等...
模型生物微流控芯片的設計Choudhary等人設計了多通道微流控灌注平臺,用于培養斑馬魚胚胎并捕獲胚胎內各種組織和apparatus的實時圖像。其中包含三個不同的部分。這些包括一個微流控梯度發生器,一排八個魚缸和八個輸出通道。在魚缸中,魚胚胎被單獨放置。流體梯...
MEMS超表面對特性的調控: 1.超表面meta-surface對偏振的調控:在偏振方面,超表面可實現偏振轉換、旋光、矢量光束產生等功能。 2.超表面meta-surface對振幅的調控。超表面可以實現光的非對稱透過、消反射、增透射、磁鏡、類E...
安捷倫已有一些儀器使用趨向于具有更多可用性方面的經驗,并將這些經驗應用到了微流體技術開發上。微流體和生物傳感器的項目經理Kevin Killeen博士在接受采訪時說,安捷倫的目標是為終端使用者解除負擔,“由適宜的儀器產品組裝成的系統可以讓非專業人士操縱專業設備...
國內政策大力推動MEMS產業發展:國家政策大力支持傳感器發展,國內MEMS企業擁有好的發展環境。我國高度重視MEMS和傳感器技術發展,在2017年工信部出臺的《智能傳感器產業三年行動指南(2017-2019)》中,明確指出要著力突破硅基MEMS加工技術、MEM...
微流控芯片的自動化檢測與統計分析:公司建立了基于機器視覺的微流控芯片自動化檢測系統,實現尺寸測量、缺陷識別與性能統計的全流程智能化。檢測設備配備6MPUSB3.0攝像頭與遠心光學鏡頭,配合步進電機平移臺(精度±1μm),可對芯片流道、微孔、電極等結構進行掃描。...
微流控芯片(microfluidic chip)是當前微全分析系統(Miniaturized Total Analysis Systems)發展的熱點領域。微流控芯片分析以芯片為操作平臺, 同時以分析化學為基礎,以MEMS微機電加工技術為依托,以微管道網絡為結...
基于微流控技術的生物醫學,應用微流控技術在藥物篩選、蛋白質組學、醫學診斷、生物傳感器和組織工程等方面有著很好的應用前景。微流控芯片技術在藥物開發、農藥殘留分析、檢測和食品安全傳感中發揮著重要作用,芯片也可以與其他各種設備集成,即比色計,熒光計和分光光度計。它有...
微機電系統是指集微型傳感器、執行器以及信號處理和控制電路、接口電路、通信和電源于一體的微型機電系統,是一個智能系統。主要由傳感器、作動器和微能源三大部分組成。微機電系統具有以下幾個基本特點,微型化、智能化、多功能、高集成度。微機電系統。它是通過系統的微型化、集...
微針器件與生物傳感集成:公司采用干濕法混合刻蝕工藝制備的微針陣列,兼具納米級前列銳度(曲率半徑<100 nm)與微米級結構強度(抗彎剛度≥1 GPa),可穿透角質層無創提取組織間液或實現透皮給藥。在藥物遞送領域,載藥微針通過可降解高分子涂層(如PLGA)實現藥...
MEMS制作工藝-微流控芯片: 微流控芯片技術(Microfluidics)是把生物、化學、醫學分析過程的樣品制備、反應、分離、檢測等基本操作單元集成到一塊微米尺度的芯片上,自動完成分析全過程。微流控芯片(microfluidicchip)是當前微全...
MEMS制作工藝-聲表面波器件的特點: 1.聲表面波具有極低的傳播速度和極短的波長,它們各自比相應的電磁波的傳播速度的波長小十萬倍。在VHF和UHF波段內,電磁波器件的尺寸是與波長相比擬的。同理,作為電磁器件的聲學模擬聲表面波器件SAW,它的尺寸也是...
安捷倫在微流控技術平臺上的三個主要產品是Agilent 2100、 Bioanalyzer/5100、 Automated Lab-on-a-Chip (后有斯坦福大學Stephen Quake研究小組開發的微流體控制因素大規模地綜合應用和瑞士Spinx Te...
腎臟組織微流控器官芯片(KoC):傳統方法或常規方法的局限性,例如細胞功能和生理學的變化或不適當,使得腎單位的病理生理學研究不準確且容易出錯。相比之下,與微流控技術的集成已被證明可以產生更好和更精確的結果。KoC基本上是通過將腎小管細胞與微流控芯片技術相結合來...
lab-on-chip 產生的應用目的是實現微全分析系統的目標-芯片實驗室,目前工作發展的重點應用領域是生命科學領域。當前(2006)研究現狀:創新多集中于分離、檢測體系方面;對芯片上如何引入實際樣品分析的諸多問題,如樣品引入、換樣、前處理等有關研究還十分薄弱...
柔性電極芯片在腦機接口中的關鍵加工工藝:腦機接口技術對柔性電極的超薄化、生物相容性及信號穩定性提出極高要求。公司利用MEMS薄膜沉積與光刻技術,在聚酰亞胺(PI)或PDMS柔性基板上制備厚度<10μm的金屬電極陣列,電極間距可達20μm,實現對單個神經元電信號...
國內政策大力推動MEMS產業發展:國家政策大力支持傳感器發展,國內MEMS企業擁有好的發展環境。我國高度重視MEMS和傳感器技術發展,在2017年工信部出臺的《智能傳感器產業三年行動指南(2017-2019)》中,明確指出要著力突破硅基MEMS加工技術、MEM...
微流控與金屬片電極的鑲嵌工藝技術:微流控與金屬片電極的鑲嵌工藝實現了流體通道與固態電極的無縫集成,適用于電化學檢測、電滲流驅動等場景。加工過程中,首先在硅片或玻璃基板上制備微流道(深度50-200μm,寬度100-500μm),然后將預加工的金屬片電極(如不銹...
微流控分析芯片當初只是作為納米技術的一個補充,在經歷了大肆宣傳及冷落的不同時期后,卻實現了商業化生產。微流控分析芯片在美國被稱為“芯片實驗室”(lab-on-a-chip),在歐洲被稱為“微整合分析芯片”(micrototal analytical syste...
微流控芯片對自身抗體檢測:自身抗體可以在大多數自身免疫性疾病中發現,如系統性紅斑狼瘡、系統性硬化等,此外也有證據表明自身抗體與心血管疾病、慢性tumour等疾病相關,部分自身抗體具有致病性、疾病特異性和診斷性。在疾病早期或疾病前期,自身抗體濃度便會升高,因而自...
ThinXXS公司Thomas Stange博士認為,雖然原型設計價格高且有風險,微制造技術已不再是微流控產品商業化生產的主要障礙。對于他們公司所操縱的高價藥品測試和診斷市場,校準和工藝慣性才是主要的障礙。ThinXXS于6月推出了一款新的微芯片產品QPlat...
玻璃與硅片微流道精密加工:深圳市勃望初芯半導體科技有限公司依托深硅反應離子刻蝕(DRIE)技術,實現玻璃與硅片基材的高精度微流道加工。針對玻璃芯片,通過光刻掩膜與氫氟酸濕法刻蝕工藝,可制備深寬比達10:1、表面粗糙度低于50nm的微通道網絡,適用于高通量單細胞...
微流控芯片反應信號的收集和分析的難題:由于反應體系較小,故而只產生較低的信號強度,如何收集并分析芯片中產生的信號,是微流控芯片研究的另一項重點,因此,微流控芯片大多需要龐大的信號讀取和分析設備。近年來便攜性、自動化、敏感的新型微流控芯片讀取設備受到科研人員關注...
微針電極與組織液提取芯片的創新加工技術:微針電極作為生物檢測與給藥的前沿器件,需兼顧機械強度與生物相容性。公司采用干濕結合刻蝕工藝,在硅或硬質塑料基板上制備直徑10-100μm、高度500-1000μm的微針陣列,針尖曲率半徑控制在5μm以內,確保穿刺過程的低...
神經電子芯片的MEMS微納加工技術與臨床應用:神經電子芯片作為植入式醫療設備的**組件,對微型化、生物相容性及功能集成度提出了極高要求。公司依托0.35/0.18μm高壓工藝,成功開發多通道神經電刺激SoC芯片,可實現無線充電與通訊功能,將控制信號轉化為精細電...
高聚物材料加工工藝:是以高聚物材料為基片加工微流控芯片的方法主要有:模塑法、熱壓法、LIGA技術、激光刻蝕法和軟光刻等。模塑法是先利用半導體/MEMS光刻和蝕刻的方法制作出通道部分突起的陽模,然后在陽模上澆注液體的高分子材料,將固化后的高分子材料與陽模剝離后就...
ThinXXS公司Thomas Stange博士認為,雖然原型設計價格高且有風險,微制造技術已不再是微流控產品商業化生產的主要障礙。對于他們公司所操縱的高價藥品測試和診斷市場,校準和工藝慣性才是主要的障礙。ThinXXS于6月推出了一款新的微芯片產品QPlat...