由自激振蕩磁通門傳感器交直流適應(yīng)性分析可知,設(shè)計性能優(yōu)異的自激振蕩磁通門傳感器,在激磁頻率方面有所要求,本節(jié)將對鐵磁材料參數(shù)及各個電路參數(shù)設(shè)計進行探討。作為電流傳感器,本節(jié)主要關(guān)注其檢測帶寬、量程、線性度、靈敏度及穩(wěn)定度五個方面的特性并對其進行探究。(1)檢測帶寬WIP根據(jù)自激振蕩磁通門傳感器數(shù)學(xué)模型分析,其檢測交流頻率受到激磁電壓頻率fex限制,自激振蕩磁通門傳感器檢測帶寬WIP
可以觀察到基于鐵芯C1磁化曲線的對稱性及激磁方波電壓的對稱性,激磁電流波形正向峰值與反向峰值電流滿足I+m=-I-m=Im=ρVOH/RS,且鐵芯C1工作點在線性區(qū)與飽和區(qū)之間周期性變化,因此當(dāng)自激振蕩磁通門傳感器一次測量電流為0時,激磁電流iex在單個周期內(nèi)正負半波波形中心對稱,即在單個周期內(nèi)激磁電流iex平均值為0,對于信號采樣而言,即在RS上的采樣電壓信號滿足采樣電壓VRS平均值為0。接下來對一次電流為正向及反向直流時的自激振蕩磁通門傳感器振蕩過程進行分析。當(dāng)IP>0時,激磁電壓波形Vex及激磁電流iex波形如圖2-4中藍色曲線所示,圖中紅色曲線為IP=0時激磁電流波形。根據(jù)工信部發(fā)布數(shù)...
當(dāng)一二次磁勢平衡時,環(huán)形鐵芯C1及C2磁勢平衡方程滿足:NPIP+NFIF=0(3-1)由式(3-1)可知,當(dāng)系統(tǒng)達到平衡時,一次電流與反饋電流成比例,比例系數(shù)為NF/NP。即通過測量反饋繞組中的電流幅值大小即可對一次交直流電流幅值進行測量,反饋電流的相位與一次電流相位相反。實際新型交直流傳感器通過測量串接在反饋繞組中的終端測量電阻RM上的終端測量電壓信號VRM間接完成反饋電流測量,終端測量電壓信號VRM與一次電流IP滿足:I=IF=NNR(3-2)式(3-2)表明終端測量電壓信號VRM與一次電流IP成比例,其中負號表示兩者相位相反。同時根據(jù)式(3-2)可得新型交直流電流傳感器的靈敏度SD1為...
傳統(tǒng)磁通門電流傳感器常用偶次諧波檢測法來檢測被測電流值。具體的數(shù)學(xué)模型以及測量均通過在環(huán)形磁芯上環(huán)繞激磁繞組和感應(yīng)繞組來實現(xiàn)。根據(jù)法拉第電磁感應(yīng)定律可知,感應(yīng)繞組產(chǎn)生的感應(yīng)電動勢。激勵磁場的瞬時值方向呈周期性變化,磁芯的磁導(dǎo)率隨激勵磁場的改變而變化,但是沒有正負之分。偶次諧波檢測法是磁通門傳感器檢測方法中比較直白,比較簡單也是比較原始的測量方法,這一方法原理簡單,易于理解。但是由于在提取偶次諧波過程中需要進行選頻放大、相敏整流以及積分環(huán)節(jié),檢測電路復(fù)雜,精度較低,溫漂較大。對于工業(yè)應(yīng)用來說,偶次諧波解調(diào)電路具有復(fù)雜性,同時受到磁材料的工業(yè)性能限制,使用這種傳感器費用較高。,2022年有83.9...
一階低通濾波器及高通濾波器的截止頻率f0為:f0=采樣電阻Rs2后接高通濾波器用于獲取高于50Hz的反向激磁電流中無用高頻分量。將高通濾波器HPF濾波后信號V’Rs2與采樣電阻Rs1上電壓信號疊加后合成電壓信號VR12完成信號解調(diào),VR12中有用低頻信號為直流分量及工頻50Hz交流,故低通濾波器LPF截止頻率應(yīng)大于50Hz,通過參數(shù)設(shè)計,實際LPF的截止頻率設(shè)計為59Hz。設(shè)計HPF的截止頻率為59Hz,以完成對采樣電阻Rs2上的激磁電壓信號的采樣并通過HPF取出其反向無用高頻分量。在科學(xué)研究領(lǐng)域,電流測量對于探索物質(zhì)的電子行為、研究化學(xué)反應(yīng)和生物過程等方面具有重要意義。溫州磁通門電流傳感器磁...
因此測量交直流電流時,需要滿足交流分量 峰值和直流分量恒定值疊加都依然滿足式(2-46),當(dāng)一次電流峰值超過量程則會導(dǎo)致 自激振蕩磁通門工作狀態(tài)發(fā)生紊亂, 非線性誤差增大。同時由式(2-46)可知,擴大自激振蕩磁通門傳感器開環(huán)測量線性區(qū)域量程的方法 有:(a)增大激磁繞組匝數(shù) N1 ;(b)增大穩(wěn)態(tài)充電電流 IC;(c)降低鐵芯 C1 飽和閾值電 流 Ith;根據(jù)自激振蕩磁通門原理及其數(shù)學(xué)模型的相關(guān)假設(shè)可知, 為保證鐵芯進入飽和區(qū)工 作, 大充電電流 Im 需要大于鐵芯激磁飽和電流閾值 Ith ,即 Im>Ith 。且在滿足一定約束 條件及假設(shè)下,終推導(dǎo)出基于分段線性磁化曲線模型的激磁電流 i...
無錫納吉伏公司根據(jù)參數(shù)優(yōu)化設(shè)計準(zhǔn)則,進行了鐵芯選型并設(shè)計了相應(yīng)電流檢測電路、信號解調(diào)電路、誤差控制電路及電流反饋電路,用雙鐵芯三繞組研制出新型交直流電流傳感器,相比同類產(chǎn)品的三鐵芯四繞組,四鐵芯六繞組等結(jié)構(gòu),成本極大降低,結(jié)構(gòu)也得到簡化。利用比例直流疊加法,提出了新型交直流電流傳感器性能測試方案。進行了交流計量性能測試、直流計量性能測試以及交直流計量性能測試,測試結(jié)果表明,其電流測量誤差均小于0.05級電流互感器誤差限值。說明研制的交直流傳感器解決了一二次融合下高精度交直流電流測量問題,且交流測量與直流測量互不干擾,可以單獨作為高精度交流電流傳感器,也可作為高精度直流電流傳感器,同時亦可作為抗...
電源系統(tǒng)中在一些情況下會產(chǎn)生很大的脈沖電流,脈沖電流的存在時間短,但是會對整個電源系統(tǒng)造成極大的損害。此時的電流的 波形的屬于復(fù)雜的電流波形,同時電流波形變化劇烈。無錫納吉伏公司針對這樣的情況,設(shè)計了新型電流傳感器。為了有效的防止脈沖電流對開關(guān)電源系統(tǒng)造成的損害,必須有效快速的檢測脈沖電流。與此同時還需要對開關(guān)電源中正常工作時的交直流電流進行精確的測量,以保證對電源系統(tǒng)中的工作狀態(tài)的控制。實際的電源系統(tǒng)中,脈沖電流要比正常工作狀態(tài)下的交直流電流高出許多,甚至相差幾個數(shù)量級,一般的電流傳感器不能既保證對正常狀態(tài)下的交直流的測量精度,同時又可以快速精確的測量突發(fā)的脈沖電流,所以研究可以同時測量脈沖...
導(dǎo)致正半周波自激振蕩過程將不會在原 t5 時刻進入飽和區(qū),而是略 有延后,即鐵芯 C1 工作點將滯后進入負向飽和區(qū) C;而在正向飽和區(qū) A 及負向飽和區(qū) C 中,激磁電流峰值仍然滿足 I+m=-I-m=Im=ρVOH/RS,且非線性電感時間常數(shù)未發(fā)生變化, 因此鐵芯 C1 飽和區(qū)自激振蕩階段, 激磁電流由 I+th1 正向增大至 I+m 的時間間隔增大, 而 激磁電流由 I-th1 負向增大至 I-m 的時間間隔減小。 由上述分析可知,測量正向直流時鐵 芯工作點的特征為: 鐵芯 C1 工作在正向飽和區(qū) B 的時間大于工作在負向飽和區(qū) C 的時 間,使激磁電流 iex 波形上出現(xiàn)了正負半周波...
鋰電池的短路保護:當(dāng)電池發(fā)生短路時,電流傳感器可以迅速響應(yīng)并觸發(fā)保護機制,切斷電源電路,防止電池短路造成的損壞。 鋰電池的過放保護:當(dāng)電池電量過低時,電流傳感器可以控制電池自動停止放電,防止電池過放損傷。 鋰電池的容量檢測:通過電流傳感器可以實時監(jiān)測電池的充放電電流和電壓,結(jié)合電池的充放電效率,可以估算電池的容量,實現(xiàn)對電池的質(zhì)量檢測。 鋰電池的自動分揀控制:電流傳感器可以配合其他傳感器和控制系統(tǒng)實現(xiàn)電池的自動分揀控制,根據(jù)電池的充放電狀態(tài)、容量等參數(shù)將電池分為不同的等級或類型,提高生產(chǎn)效率和精度。 綜上所述,電流傳感器在動力電池化成分容設(shè)備上的應(yīng)用多,對于保障鋰電池的生產(chǎn)和質(zhì)量具有重要的作用...
對于交、直流電流信號檢測,除了磁調(diào)制方法,還有基于歐姆定律的分流器法、基于電磁感應(yīng)原理的羅氏線圈法、基于霍爾效應(yīng)原理的霍爾電流傳感器法以及基于磁光效應(yīng)的光電電流傳感器法等。這些測量方法理論上均可用于交直流電流的測量,但具有不同的特點。除了羅氏線圈電流傳感器無法進行交直流同時測量,其他四種方法皆可測量交直流電流,但各有優(yōu)缺點,因此各自的適用場合不同。光學(xué)電流傳感器電流檢測部分為無源結(jié)構(gòu),因此具有高可靠性特點,在電磁環(huán)境惡劣、測量安全性及可靠性要求較高場合使用,但受限于成本因素,在電網(wǎng)電流測量中在小部分場合使用?;诘皖l濾波的硬件解調(diào)方法,用以簡化軟件中數(shù)據(jù)處理復(fù)雜程度。溫州電流傳感器定制當(dāng)測量交...
磁通門傳感器是一種根據(jù)電磁感應(yīng)現(xiàn)象加以改造的變壓器式的器件,只是它的變壓器效應(yīng)是用于對外界被測磁場進行調(diào)制。它的基本原理可以由法拉第電磁感應(yīng)定律進行解釋。磁通門傳感器是采用某些高導(dǎo)磁率,低矯頑力的軟磁材料(例如坡莫合金)作為磁芯,磁芯上纏繞有激勵線圈和感應(yīng)線圈。在激勵線圈中通入交變電流,則在其產(chǎn)生的激勵磁場的作用下,感應(yīng)線圈中產(chǎn)生由外界環(huán)境磁場調(diào)制而成的感應(yīng)電勢。該電勢包含了激勵信號頻率的各個偶次諧波分量,通過后續(xù)的各種傳感器信號處理電路,利用諧波法對感應(yīng)電勢進行檢測處理,使得該電勢與外界被測磁場成正比。又因為磁通門傳感器的磁芯只有工作在飽和狀態(tài)下才能獲得較大的信號,所以該傳感器又稱為磁飽和傳...
PCS是儲能系統(tǒng)中電池與電網(wǎng)之間的橋梁,通過監(jiān)控與調(diào)度系統(tǒng)的調(diào)配,實施有效和安全的儲能和放電管理。在儲能模式下,PCS將電網(wǎng)的交流電轉(zhuǎn)變?yōu)橹绷麟娊o電池組充電,而在并網(wǎng)發(fā)電模式下,PCS將電池的直流電轉(zhuǎn)變?yōu)榻涣麟娺M行并網(wǎng)發(fā)電。因此,PCS需要具備以下特性: 可以雙向工作,既可工作在逆變模式,也可工作在整流模式; 正常工作時,電流波形呈現(xiàn)正弦波形,盡可能地不向電網(wǎng)注入直流分量以及低頻諧波; 有功功率和無功功率可以大范圍地調(diào)節(jié)。羅氏線圈傳感器是一種基于電磁感應(yīng)原理的電流測量裝置,它由一個線圈和一個磁芯組成。鄭州磁調(diào)制電流傳感器廠家現(xiàn)貨直流特性測試實驗參考《測量用電流互感器檢定規(guī)程》,依據(jù)圖 5-1...
當(dāng)一次側(cè)存在直流分量時,傳統(tǒng)交流電流互感器計量失準(zhǔn)。當(dāng)一次側(cè)存在交流分量時,傳統(tǒng)直流電流互感器鐵芯激磁狀態(tài)受到影響,終導(dǎo)致直流計量失準(zhǔn)。已有方案中基于自激振蕩磁通門技術(shù)的電流傳感器,并未對交直流同時測量時交直流電流互感器性能進行測試[9,15]。目前也缺乏對交直流電流互感器校驗的相關(guān)章程,因此試驗時結(jié)合等44安匝方法,通過同時輸入交流電流和直流電流、且直流分量占比可調(diào)的方式,測試交直流下新型交直流電流互感器直流測量性能、交流測量性能。助電子式補償電路檢測勵磁磁勢并輸出相應(yīng)比例補償勵磁電流,采用該方法電子補償式交流比較儀整機功耗降低。蘇州LEM電流傳感器現(xiàn)貨當(dāng)一次電流IP為純直流分量時,通過分析...
直流分量直接影響電網(wǎng)中電力設(shè)備如電流互感器、變壓器等正常運行,國內(nèi)外集中研究了直流分量產(chǎn)生的原因及其對電流互感器計量性能的影響,直流分量下交流測量新方法等。國外對于電網(wǎng)中直流分量對電力設(shè)備影響相關(guān)的研究較早,早期是美國教授J.G.Kappman等重點研究了中性點直接接地系統(tǒng)中地磁感應(yīng)電流。研究發(fā)現(xiàn)在地磁暴感應(yīng)準(zhǔn)直流影響下,電磁式電流互感器二次側(cè)電流畸變,誤差明顯增大;當(dāng)變比較大或負荷電流較小時,互感器受直流分量影響較小。交流比較儀和直流比較儀在電流檢測方法、電磁理論分析與結(jié)構(gòu)設(shè)計上對于交直流電流測量具有寶貴的借鑒意義。成都功率分析儀電流傳感器供應(yīng)商t7時刻起鐵芯C1工作點回移至線性區(qū)A,非線性...
電流傳感器是一種設(shè)備,它能夠?qū)㈦娏餍盘栟D(zhuǎn)換為另一個可分析信號,這種設(shè)備在電力系統(tǒng)和電子設(shè)備中對電流的準(zhǔn)確測量非常有用。市場上有許多不同類型的電流傳感器,以滿足不同測量技術(shù)和初級電流的不同波形、脈沖類型、隔離和電流強度等因素的需求。 一種常見的電流傳感器是分流器。分流器本質(zhì)上是一個具有已知電阻值的電阻器。當(dāng)電流通過分流器時,會產(chǎn)生一個與該電流成正比的電壓信號。這個原理是基于歐姆定律(V=R×I)。通過這種方式,我們可以準(zhǔn)確地測量交流和直流電流。 另一種常用的電流傳感器是霍爾效應(yīng)電流傳感器。這種傳感器利用磁場來測量電流。為霍爾探頭提供電源會在垂直于表面的方向上施加磁場,并產(chǎn)生與磁場強度成比例的...
VRS1 為采樣電阻 RS1 上電壓信號,V’RS2 為采樣電阻 RS2 上電壓信號 經(jīng)高通濾波器 HPF 處理后的電壓信號,當(dāng) HPF 時間常數(shù)設(shè)置合理, 可有效濾除采樣電 阻 RS2 上電壓信號中無用低頻分量,因此在 V’RS2 保留反向的無用高頻分量 VH2 。若參 數(shù)設(shè)置合理,而高頻無用交流分量 VH1 和無用高頻分量 VH2 恰好幅值大小相同,則理論 上通過高通濾波器 HPF 即完成了無用高頻分量的濾除,從而獲得更為純凈的有用低頻 信號。然而實際電路無法保證環(huán)形鐵芯 C1 與 C2 及其附加電路一致性,因此無法完成無 用高頻分量完全消除。設(shè)計中,新型交直流電流傳感器增加低通濾波器 ...
無錫納吉伏公司根據(jù)參數(shù)優(yōu)化設(shè)計準(zhǔn)則,進行了鐵芯選型并設(shè)計了相應(yīng)電流檢測電路、信號解調(diào)電路、誤差控制電路及電流反饋電路,用雙鐵芯三繞組研制出新型交直流電流傳感器,相比同類產(chǎn)品的三鐵芯四繞組,四鐵芯六繞組等結(jié)構(gòu),成本極大降低,結(jié)構(gòu)也得到簡化。利用比例直流疊加法,提出了新型交直流電流傳感器性能測試方案。進行了交流計量性能測試、直流計量性能測試以及交直流計量性能測試,測試結(jié)果表明,其電流測量誤差均小于0.05級電流互感器誤差限值。說明研制的交直流傳感器解決了一二次融合下高精度交直流電流測量問題,且交流測量與直流測量互不干擾,可以單獨作為高精度交流電流傳感器,也可作為高精度直流電流傳感器,同時亦可作為抗...
t3時刻起鐵芯C1工作點回移至線性區(qū)A,非線性電感L仍繼續(xù)放電,此時激磁感抗ZL較大,激磁電流緩慢由I+th繼續(xù)降低,直至在t4時刻降為0。0~t4期間,構(gòu)成了激磁電流iex的正半周波TP。t4時刻起鐵芯C1工作點開始由線性區(qū)A先負向飽和區(qū)B移動,在t4~t5期間,鐵芯C1仍工作于線性區(qū)A,此時輸出方波激磁電壓仍為VO=VOL,因此電路開始對非線性電感L反向充電,此時激磁感抗ZL未變,激磁電流iex開始由0反向緩慢增大,一直增長至反向激磁電流閾值I-th。梯次利用下游應(yīng)用場景包括低速電動車及儲能,應(yīng)用場景多,且技術(shù)要求相對更低,發(fā)展速度更快。西安低溫漂電流傳感器價格值得注意的是,當(dāng)激磁電壓頻率...
電流的精密測量一直是工業(yè)生產(chǎn)制造和計量科學(xué)理論的重要課題。近些年來,伴隨著智能電網(wǎng)的快速建設(shè)及交直流混合配電網(wǎng)的不斷發(fā)展,配網(wǎng)中交直流混合電網(wǎng)的建設(shè)規(guī)模及復(fù)雜度均有增加。由于交直流配網(wǎng)的發(fā)展以及整流型用電負荷的增多,例如電氣化鐵路、大型整流硅設(shè)備及煉鋼、煉鋁、塑料制品廠商的增多,使得交流電網(wǎng)中存在直流分量。直流分量的存在,使得配網(wǎng)中現(xiàn)有的交流檢測設(shè)備產(chǎn)生了誤差增大、計量失準(zhǔn)、保護誤動等多種問題,變壓器等設(shè)備在直流分量下輸出電壓畸變。只要磁芯磁導(dǎo)率隨激勵磁場強度變化,感應(yīng)電勢中就會出現(xiàn)隨環(huán)境磁場強度變化的偶次諧波增量。上海板載式電流傳感器價格大全由于高頻大功率電力電子設(shè)備應(yīng)用的增加,這些設(shè)備中可...
IP<0 時激磁電壓波形 Vex 及激磁電流波形,圖中紅色曲線 為 IP=0 時激磁電流波形。為方便下一節(jié)對自激振蕩磁通門傳感器建模,將零點選擇為激磁電流達到反向充電電流 I-m 時刻,此時激磁電壓恰好發(fā)生翻轉(zhuǎn)。當(dāng)一次電流 IP<0,即為負向直流偏置,其在鐵芯 C1 中產(chǎn)生恒定的去磁直流磁通, 鐵芯 C1 磁化曲線將向右發(fā)生平移使鐵芯 C1 進入負向飽和區(qū)的閾值電流變小。 且負向飽 和閾值電流滿足 I-th1=I-th-βIp,此時新的振蕩過程將不同于原 IP=0 時自激振蕩過程,由于 負向飽和閾值電流 I-th1 小于原負向激磁閾值電流 I-th,從而導(dǎo)致負半周波自激振蕩過程將 不會在原...
觀察式(2-25)、(2-26),為了避免復(fù)雜運算,需要對ln運算進行化簡。根據(jù)洛必達法則,假設(shè)Im<
t7時刻起鐵芯C1工作點回移至線性區(qū)A,非線性電感L仍繼續(xù)充電,此時激磁感抗ZL較大,激磁電流iex緩慢由I-th繼續(xù)增大,直至在t8時刻增大為0。t5~t8期間,構(gòu)成了激磁電流iex的負半周波TN。至此0~t8期間構(gòu)成了RL自激振蕩電路一個完整的周波,通過上述分析可知,在一個完整的振蕩周期內(nèi),激磁鐵芯C1工作點在線性區(qū)A、正向飽和區(qū)B及負向飽和區(qū)C之間,由A→B→A→C→A來回振蕩。就物理本質(zhì)而言,磁通門傳感器正是利用磁性材料非線性的特點,完成了自激振蕩的起振過程[16]。這同時也表明,在使用自激振蕩磁通門傳感器時,需要滿足正負大充電電流Im大于鐵芯C1激磁電流閾值Ith的約束條件,即自激振...
式(3-3)表明新型交直流電流傳感器靈敏度與終端測量電阻 RM 阻值成正比,與 反饋繞組匝數(shù) NF 成反比。負號沒有實際意義,表示輸出與輸入信號反相。同時,由于環(huán)形鐵芯 C1 與環(huán)形鐵芯 C2 工作在完全相反的激磁狀態(tài),采樣電阻 RS2 上的交直流采樣電壓信號 VRS2 中的交直流電流信號理論上與 VRS1 幅值相同,而方向相 反。下一節(jié)將具體介紹反向激磁的環(huán)形鐵芯 C2 在系統(tǒng)中的具體作用。新型交直流傳感器是基于 PI 比例積分放大電路進行誤差控制的,理論上比例積分 環(huán)節(jié)將會保證系統(tǒng)穩(wěn)態(tài)誤差為 0,而實際上閉環(huán)交直流傳感器工作的電磁環(huán)境更為復(fù)雜, 在輸入端除了一次繞組 WP 中交直流...
為了簡化運算,按照自激振蕩磁通門電路, 激磁磁芯選取高磁導(dǎo)率、 低剩磁、低矯頑力的鐵磁材料,鐵芯 C1 磁化曲線模型選擇三折線分段線性化函數(shù)模型 表示, 并忽略鐵芯磁滯效應(yīng), 在線性區(qū) A 的激磁電感為 L,在正向飽和區(qū) B 及負向飽和 區(qū) C 的激磁電感為 l,且滿足 L>>l。假設(shè)零時刻時,激磁電流 iex 達到負向充電最大電流 I-m ,且零時刻激磁方波電壓由 負向峰值 VOL 躍變?yōu)檎蚍逯?VOH。同時滿足-VOL=VOH=Vout ,正負向激磁電流峰值仍然 滿足 I+m=-I-m=Im=ρVOH/RS2022年廣東省新型儲能產(chǎn)業(yè)營業(yè)收入約1500億元。嘉興低溫漂電流傳感器聯(lián)系方式...
電流精密測量研究一直以來都是計量領(lǐng)域的重點研究方向之一。測量電流基本的原理是法拉第電磁感應(yīng)原理,由此發(fā)展出電流互感器。而研究發(fā)現(xiàn)電流互感器正常工作時,需要勵磁電流對主鐵芯進行磁化,而鐵芯磁化曲線具有非線性特征,因此勵磁電流也表現(xiàn)出非線性特征。非線性勵磁電流為電流互感器誤差的根本原因。一開始基于電流互感器結(jié)構(gòu)對交流精密測量提出改進措施的是南斯拉夫尼古拉特斯拉(Insititue Nikola Tesla)研究所,其結(jié)合指零儀提出交流比較儀結(jié)構(gòu),通過外加電流源對勵磁電流進行補償,使得一二次安匝平衡,然后完成電流互感器精度的提升,其研究成果用于電流互感器的計量性能測試。1950 年之后,加拿大學(xué)者 ...
假設(shè)功率放大電路性能優(yōu)越,在設(shè)計檢測帶寬內(nèi)閉環(huán)增益大,輸出紋波電流小,輸出穩(wěn)定。則G3可用其閉環(huán)增益KPA表示其傳遞函數(shù)為:G3=KPA(3-15)電流反饋模塊輸入信號為反饋繞組WF兩端電壓信號,即功率放大電路輸出電壓信號。其輸出信號為流過終端測量電阻RM的反饋電流信號IF。根據(jù)上述關(guān)系,可推導(dǎo)電流反饋模塊G4的傳遞函數(shù)為:G4==RM+ZF1RM+jwLFlcRMlc+jwμ0μeN2F(2Sc)(3-16)式(3-16)中,ZF為反饋繞組WF的復(fù)阻抗,忽略其電阻值,用反饋繞組的激磁感抗jwLF表示;根據(jù)激磁電感與磁路參數(shù)關(guān)系進一步對公式進行化簡,式中l(wèi)c為合成鐵芯C12的平均磁路長度,μe...
磁通門傳感器是一種根據(jù)電磁感應(yīng)現(xiàn)象加以改造的變壓器式的器件,只是它的變壓器效應(yīng)是用于對外界被測磁場進行調(diào)制。它的基本原理可以由法拉第電磁感應(yīng)定律進行解釋。磁通門傳感器是采用某些高導(dǎo)磁率,低矯頑力的軟磁材料(例如坡莫合金)作為磁芯,磁芯上纏繞有激勵線圈和感應(yīng)線圈。在激勵線圈中通入交變電流,則在其產(chǎn)生的激勵磁場的作用下,感應(yīng)線圈中產(chǎn)生由外界環(huán)境磁場調(diào)制而成的感應(yīng)電勢。該電勢包含了激勵信號頻率的各個偶次諧波分量,通過后續(xù)的各種傳感器信號處理電路,利用諧波法對感應(yīng)電勢進行檢測處理,使得該電勢與外界被測磁場成正比。又因為磁通門傳感器的磁芯只有工作在飽和狀態(tài)下才能獲得較大的信號,所以該傳感器又稱為磁飽和傳...
當(dāng)一次電流 IP>0,即為正向直流偏置,其在鐵芯 C1 中產(chǎn)生恒定的增磁直流磁通, 鐵芯 C1 磁化曲線將向左發(fā)生平移, 使鐵芯 C1 進入正向飽和區(qū)的閾值電流變小。 且正向 飽和閾值電流滿足 I+th1=I+th-βIp,其中 β=NP/N1 為一次繞組 WP 匝數(shù) NP 與激磁繞組 W1 匝 數(shù) N1 之間的比值。此時新的振蕩過程將不同于原 IP=0 時自激振蕩過程, 由于正向飽和 閾值電流 I+th1 小于原正向激磁閾值電流 I+th ,導(dǎo)致正半周波自激振蕩過程將不會在原 t1 時刻進入飽和區(qū), 而是略有提前, 即鐵芯 C1 工作點將提前進入正向飽和區(qū) B;同時由于 正向直流磁通作用,...