鋰電池(可充型)之所以需要保護,是由它本身特性決定的。由于鋰電池本身的材料決定了它不能被過充、過放、過流、短路及超高溫充放電,因此鋰電池鋰電組件總會跟著一塊精致的保護板和一片電流保護器出現。鋰電池的保護功能通常由保護電路板和PTC等電流器件協同完成,保護板是由電子電路組成,在-40℃至+85℃的環境下時刻準確的監視電芯的電壓和充放回路的電流,及時操控電流回路的通斷;PTC在高溫環境下防止電池發生惡劣的損壞。保護板通常包括IC、MOS開關及輔助器件NTC、ID、存儲器等。其中操控IC,在一切正常的情況下操控MOS開關導通,使電芯與外電路溝通,而當電芯電壓或回路電流超過規定值時,它立刻操控MOS開關關斷,保護電芯的安全。NTC是Negativetemperaturecoefficient的縮寫,意即負溫度系數,在環境溫度升高時,其阻值降低,使用電設備或充電設備及時反應、操控內部中斷而停止充放電。 電動汽車、儲能系統、消費電子(手機/筆記本)、無人機、工業設備等。低速電動車BMS電池管理系統軟件設計
BMS系統保護板的功能:電池充放電狀態監測:BMS系統保護板能夠實時監測電池的電壓、電流、溫度等關鍵參數,確保電池在安全的工作范圍內運行。過充與過放保護:當電池充電時,如果電壓超過設定的安全范圍,BMS系統保護板會立即斷開充電電路,防止電池過充;同樣地,當電池放電時,如果電壓低于設定的安全范圍,BMS系統保護板會及時斷開放電電路,防止電池過放。溫度保護:通過溫度傳感器實時監測電池的溫度,當溫度過高或過低時,BMS系統保護板會采取相應的措施,如降低充電電流或停止充電,以保護電池不受損害。短路保護:BMS系統保護板還具有短路保護功能,當檢測到電池組內部或外部發生短路時,會立即切斷電源,防止短路造成的損害。平衡管理:對于多節電池的電動車,BMS系統保護板還能實現電池的平衡管理,確保每節電池在充放電過程中的壓差不大,從而提高整個電池組的使用壽命和性能。選擇我們的BMS,就是選擇高效、安全、可靠的電池管理體驗,共同邁向能源利用的新高度! 太陽能BMS電池管理系統軟件開發未來BMS的發展趨勢如何?
技術層面,BMS正朝著高集成化、智能化與車規級功能安全方向發展。無線BMS技術已進入商用階段,通過分布式架構與邊緣計算,實現數據的本地處理,減少傳輸負擔。AI算法的融入使BMS能夠預測電池剩余壽命與潛在故障,提前采取維護措施。例如,機器學習優化充放電策略,適配電力現貨市場峰谷套利需求。應用場景方面,BMS已從電動汽車擴展至儲能系統、便攜式電子設備及航空航天等領域。在智能手機中,微型BMS集成于電路板,側重輕量化與低功耗設計;在航空領域,BMS需滿足高可靠性、冗余設計及極端環境適應要求。隨著2025年《新型儲能安全技術規范》的實施,BMS的安全標準進一步升級,消防系統成本占比≥5%,熱失控預警時間≥30分鐘,推動行業向更安全、更便捷的方向發展。
SOC的重要性是防止電池損壞:通過將SOC保持在20%至80%之間,電動汽車BMS可防止電池過度磨損,延長SOH、容量和運行壽命。BMS還依靠準確的SOC讀數來降低電池單元因完全充電和深度放電而受損的危險。性能優化:電動汽車電池在特定的SOC范圍內運行時可實現較好性能。盡管根據電池化學成分和設計的不同,這些范圍也會有所不同,但大多數電動汽車電池都能在20%至80%SOC范圍內實現電力傳輸和強勁的加速性能。估算行駛里程:SOC直接影響電動汽車的行駛里程,這對安全的行程規劃至關重要。優化能效:精確的SOC測量可較大限度地減少能源浪費,同時較大限度地利用再生制動延長行駛里程。確保充電安全:BMS利用SOC讀數來調節電動汽車電池的充電速率,采用涓流充電和受控充電等技術來保護電池壽命。 BMS如何實現多電芯管理?
隨著城市生活節奏的加快,電動自行車以其便捷高效率成為了許多人出行的選擇??呻S之而來的安全問題也不容忽視,特別是電動自行車入戶充電引發的火災,屢見不鮮,給人們的生命財產安全帶來了極大威脅。深圳智慧動鋰電子股份有限公司是一家致力于鋰電池安全管理的專精特新企業,我們一起探索一下其自主研發的”智鋰狗系統”,如何利用RFID(無線射頻識別)技術成為我們防止電動自行車入戶充電引起火災的有力武器。RFID是一種無需直接接觸即可通過無線射頻信號進行識別和跟蹤對象的技術。它主要由標簽、讀取器和數據處理系統三部分組成。還可以與視頻監控、智能基站等技術手段相結合,在防止電動自行車入戶充電火災方面,發揮著巨大作用。 BMS如何用于消費電子產品?便攜式電源BMS電池管理系統價格
有關BMS的未來發展趨勢?低速電動車BMS電池管理系統軟件設計
目前BMS架構主要分為集中式架構和分布式架構。集中式BMS將所有電芯統一用一個BMS硬件采集,適用于電芯少的場景。集中式BMS具有成本低、結構緊湊、可靠性高的作用,一般常見于容量低、總壓低、電池系統體積小的場景中,如電動工具、機器人(搬運機器人、助力機器人)、IOT智能家居(掃地機器人、電動吸塵器)、電動叉車、電動低速車(電動自行車、電動摩托、電動觀光車、電動巡邏車、電動高爾夫球車等)、輕混合動力汽車。目前行業內分布式BMS的各種術語五花八門,不同的公司,不同的叫法。動力電池BMS大多是主從兩層架構。儲能BMS則因為電池組規模較大,多數都是三層架構,除了從控、主控之外,還有一層總控。從智能手機到太空探索,BMS正在重新定義能源使用方式。隨著固態電池、鈉離子電池等新技術的落地,下一代BMS將成為實現“零碳社會”的中心支點,推動人類向更高速、更可持續的能源未來邁進。 低速電動車BMS電池管理系統軟件設計