通常情況下預加重技術使用在信號的發送端,通過預先對信號的高頻分量進行增強來 補償傳輸通道的損耗。預加重技術由于實現起來相對簡單,所以在很多數據速率超過 1Gbps 的總線中使用,比如PCle,SATA 、USB3 .0 、Displayport等總線中都有使用。當 信號速率進一步提高以后,傳輸通道的高頻損耗更加嚴重,靠發送端的預加重已經不太 夠用,所以很多高速總線除了對預加重的階數進一步提高以外,還會在接收端采用復雜的均 衡技術,比如PCle3.0 、SATA Gen3 、USB3.0 、Displayport HBR2 、10GBase-KR等總線中都 在接收端采用了均衡技術。采用了這些技術后,FR-4等傳統廉價的電路板材料也可以應用 于高速的數字信號傳輸中,從而節約了系統實現的成本。數字信號是離散的。它的幅度被限制在一個確定的值。江西信息化數字信號測試
我們經常使用到的總線根據數據傳輸方式的不同,可以分為并行總線和串行總線。
并行總線是數字電路中早也是普遍采用的總線結構。在這種總線上,數據線、地址線、控制線等都是并行傳輸,比如要傳輸8位的數據寬度,就需要8根數據信號線同時傳輸;如果要傳輸32位的數據寬度,就需要32根數據信號線同時傳輸。除了數據線以外,如果要尋址比較大的地址空間,還需要很多根地址線的組合來不同的地址空間。圖1.7是一個典型的微處理器的并行總線的工作時序,其中包含了1根時鐘線、16根數據線、16根地址線以及一些讀寫控制信號。 江西信息化數字信號測試數字信號處理系統設計流程;
時間偏差的衡量方法。由于信號邊沿的時間偏差可能是由于各種因素造成的,有隨機的噪聲,還有確定性的干擾。所以這個時間偏差通常不是一個恒定值,而是有一定的統計分布,在不同的應用場合這個測量的結果可能是用有效值(RMS)衡量,也可能是用峰-峰值(peak-peak)衡量,更復雜的場合還會對這個時間偏差的各個成分進行分解和估計。因此抖動的精確測量需要大量的樣本以及復雜的算法。對抖動進行衡量和測量時,需要特別注意的是,即使對于同一個信號,如果用不同的方法進行衡量,得到的抖動測量結果也可能不一樣,下面是幾種常用的抖動測量項目。
采用AC耦合方式的另一個好處是收發端在做互連時不用太考慮直流偏置點的互相影響, 互連變得非常簡單,對于熱插拔的支持能力也更好。
(3)有利于信號校驗。很多高速信號在進行傳輸時為了保證傳輸的可靠性,要對接收 到的信號進行檢查以確認收到的信號是否正確。在8b/10bit編碼表中,原始的8bit數據總 共有256個組合,即使考慮到每個Byte有正負兩個10bit編碼,也只需要用到512個10bit 的組合。而10bit的數據總共可以有1024個組合,因此有大約一半的10bit組合是無效的 數據,接收端一旦收到這樣的無效組合就可以判決數據無效。另外,前面介紹過數據在傳輸 過程中要保證直流平衡, 一旦接收端收到的數據中發現違反直流平衡的規則,也可以判決數 據無效。因此采用8b/10b編碼以后數據本身就可以提供一定的信號校驗功能。需要注意的是,這種校驗不是足夠可靠,因為理論上還是可能會有幾個bit在傳輸中發生了錯誤,但 是結果仍然符合8b/10b編碼規則和直流平衡原則。因此,很多使用8b/10b編碼的總線還 會在上層協議上再做相應的CRC校驗(循環冗余校驗)。 數字信號幅度測試的定義;
采用并行總線的另外一個問題在于總線的吞吐量很難持續提升。對于并行總線來說, 其總線吞吐量=數據線位數×數據速率。我們可以通過提升數據線的位數來提高總線吞吐 量,也可以通過提升數據速率來提高總線吞吐量。以個人計算機中曾經非常流行的PCI總 線為例,其**早推出時總線是32位的數據線,工作時鐘頻率是33MHz,其總線吞吐量= 32bit×33MHz;后來為了提升其總線吞吐量推出的PCI-X總線,把總線寬度擴展到64位, 工作時鐘頻率比較高提升到133MHz,其總線吞吐量=64bit×133MHz。是PCI插槽 和PCI-X插槽的一個對比,可以看到PCI-X由于使用了更多的數據線,其插槽更長。
但是隨著人們對于總線吞吐量要求的不斷提高,這種提升總線帶寬的方式遇到了瓶頸。首先由于芯片尺寸和布線空間的限制,64位數據寬度已經幾乎是極限了。另外,這64根數據線共用一個采樣時鐘,為了保證所有的信號都滿足其建立保持時間的要求,在PCB上布線、換層、拐彎時需要保證精確等長。而總線工作速率越高,對于各條線的等長要求就越高,對于這么多根信號要實現等長的布線是很難做到的。
用邏輯分析儀采集到的一個實際的8位總線的工作時序,可以看到在數據從0x00跳變到0xFF狀態過程中,這8根線實際并不是精確一起跳變的。 什么是模擬信號?數字信號?江西信息化數字信號測試
數字信號帶寬、信道帶寬、信息速率、基帶、頻帶的帶寬;江西信息化數字信號測試
數字信號的上升時間(Rising Time)
任何一個真實的數字信號在由一個邏輯電平狀態跳轉到另一個邏輯電平狀態時,其中間的過渡時間都不會是無限短的。信號電平跳變的過渡時間越短,說明信號邊沿越陡。我們通常使用上升時間(RisingTime)這個參數來衡量信號邊沿的陡緩程度,通常上升時間是指數字信號由幅度的10%增加到幅度的90%所花的時間(也有些場合會使用20%~80%的上升時間或其他標準)。上升時間越短,說明信號越陡峭。大部分數字信號的下降時間(信號從幅度的90%下降到幅度的10%所花的時間)和上升時間差不多(也有例外)。圖1.2比較了兩種不同上升時間的數字信號。上升時間可以客觀反映信號邊沿的陡緩程度,而且由于計算和測量簡單,所以得到的應用。對有些非常高速的串行數字信號,如PCIe、USB3.0、100G以太網等信號,由于信號速率很高,傳輸線對信號的損耗很大,信號波形中很難找到穩定的幅度10%和90%的位置,所以有時也會用幅度20%~80%的上升時間來衡量信號的陡緩程度。通常速率越高的信號其上升時間也會更陡一些(但不一定速率低的信號上升時間一定就緩),上升時間是數字信號分析中的一個非常重要的概念,后面我們會反復提及和用到這個概念。 江西信息化數字信號測試
深圳市力恩科技有限公司致力于儀器儀表,以科技創新實現高質量管理的追求。力恩科技作為儀器儀表的企業之一,為客戶提供良好的實驗室配套,誤碼儀/示波器,矢量網絡分析儀,協議分析儀。力恩科技不斷開拓創新,追求出色,以技術為先導,以產品為平臺,以應用為重點,以服務為保證,不斷為客戶創造更高價值,提供更優服務。力恩科技始終關注儀器儀表行業。滿足市場需求,提高產品價值,是我們前行的力量。